Study of the Anelastic Behavior of PZT and PLZT Ferroelectric Ceramics

Article Preview

Abstract:

The anelastic behavior of the ferroelectric ceramics (Pb)(Zr/Ti)O3 (PZT) and (Pb/La)(Zr/Ti)O3 (PLZT), with Zr/Ti = 65/35, La = 5 at.% and 8 at.%, was investigated in the region of the ferroelectric phase transitions. Anelastic spectroscopy experiments were performed in an acoustic elastometer system, operating in a kilohertz bandwidth, at temperatures rising from 300 K to 770 K, at a heating rate of 1 K/min, under pressure of 10-5mbar. Anelastic measurements on PZT showed only one anomaly, associated with the occurrence of a ferroelectric-paraelectric phase transition, while the PLZT data showed two anomalies, which were associated with the following transitions: the ferroelectric-paraelectric phase transition and a ferro-ferroelectric phase transition between distinct rhombohedral ferroelectric phases. The behavior of the relative variation of the elastic moduli with temperature, near the phase transitions, which describes the change in the type of coupling between strain and the order parameter in ferroelectric-paraelectric phase transition, with the increase of lanthanum amount and, linear coupling in the strain and order parameter type to PZT ceramic and linear coupling in the strain but quadratic in order parameter type for PLZT ceramics.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 326-328)

Pages:

719-724

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. Jaffe, W. Cook, and H. Jaffe: Piezoelectric ceramics (Academic Press, London 1971).

Google Scholar

[2] K. Uchino: Ferroelectric devices (Marcel Dekker, New York 2000).

Google Scholar

[3] D. Viehland, S.J. Jang, L. E. Cross and M. Wuttig: J. Appl. Phys. Vol. 68 (1990), p.2916.

Google Scholar

[4] D. Viehland, S.J. Jang, L. E. Cross and M. Wuttig: Phys Rev. B Vol. 46 (1992), p.8003.

Google Scholar

[5] G.H. Haertling: J. Am. Ceram. Soc. Vol. 82 (1999), p.797.

Google Scholar

[6] S.E. Park and T.R. Shrout: J. Appl. Phys. Vol 82 (1997), p.1804.

Google Scholar

[7] J.H. Ko, D.H. Kim and S. Kojima: Phys. Rev. B Vol. 77 (2008), p.104110.

Google Scholar

[8] A. Puskar: Internal friction of materials (Cambridge International Science Publishing, Cambridge 2001).

Google Scholar

[9] J.T. Krause and H.M. Obryan: J. Am. Ceram. Soc. Vol. 55 (1972), p.497.

Google Scholar

[10] N.K. Yushin, G . Gulyamov, N. Mamatkulov and N. Mukhtarov: Sov. Tech. Phys. Lett. Vol. 14 (1988), p.555.

Google Scholar

[11] B.L. Cheng, M. Gabbay, M. Gimenez and G. Fantozzi: J. Phys. IV Vol. 6 (1996), p.687.

Google Scholar

[12] G. Shabbir, J.H. Ko, S. Kojima and Q.R. Yin: Appl. Phys. Lett. Vol. 82 (2003), p.4696.

Google Scholar

[13] F. Cordero, M. Corti, F. Craciun, C. Galassi, D. Piazza and F. Tabak: Phys. Rev. B Vol. 71 (2005), p.094112.

Google Scholar

[14] F. Cordero, F. Craciun, A. Franco and C. Galassi: Ferroelectrics Vol. 353 (2007), p.512.

Google Scholar

[15] J.C. Slonczewski and H. Thomas: Phys. Rev. B Vol. 1 (1970), p.3599.

Google Scholar

[16] W. Rehwald: Adv. Phys. Vol. 22 (1971), p.721.

Google Scholar

[17] G.A. Smolenskii, N.K. Yushin and S.I. Smirnov: Sov. Phys Solid State Vol. 27 (1985) p.492.

Google Scholar

[18] A.S. Nowick and B. S. Berry: Anelastic relaxation in crystalline solids (New York and London: Academic Press 1972).

Google Scholar