Hydrogen Mobility in the Non-Martensitically Transforming Shape Memory Alloy Ni52Ti48

Article Preview

Abstract:

Hydrogen mobility has been studied at high temperature by absorption experiments in the Ni52Ti48 alloy, which does not transform martensitically but rather behaves like a so-called strain glass. The results obtained have been compared with those deduced from an anelastic relaxation occurring in this alloy below the strain-glass transition temperatures. An accurate analysis of the anelastic data has confirmed the conclusion that the relaxation is related to H rather than to the glass transition. Its relaxation time obeyed a Voogel-Fulcher type of temperature dependence. Combining absorption and anelastic results, the H diffusion coefficient in the B2 lattice structure of this alloy could be studied from 1200 K down to 170 K. The agreement between the absorption and mechanical spectroscopy data was satisfactory. The activation energy (0.33 eV) deduced from a Vogel-Fulcher representation of the H diffusion coefficient D was sensibly lower than earlier determinations (0.44-0.50 eV) from Arrhenius plots. The high temperature data of Ni52Ti48 alloy, compared with the ones available in the literature for other NiTi SMA in their B2 structure, show a substantial independence of D on the alloy composition.

You might also be interested in these eBooks

Info:

Periodical:

Defect and Diffusion Forum (Volumes 326-328)

Pages:

731-738

Citation:

Online since:

April 2012

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2012 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] S. Sarkar, X. Ren, and K. Otsuka: Phys. Rev. Lett. Vol. 95 (2005), p.205702.

Google Scholar

[2] Y. Wang, X. Ren and K. Otsuka: Phys. Rev. Lett. Vol. 97 (2006), p.225703.

Google Scholar

[3] Y. Wang, X. Ren, K. Otsuka and A. Saxena: Phys. Rev B Vol. 76 (2007), p.132201.

Google Scholar

[4] Y. Wang, X. Ren, K. Otsuka and A. Saxena: Acta Mater. Vol. 56 (2008), 2884.

Google Scholar

[5] Y. Wang, X. Ren and K. Otsuka: Mater. Sci. Forum, Vol. 583 (2008), p.67.

Google Scholar

[6] Y. Zhou, D. Xhue, X. Ding, K. Otsuka, J. Sun and X. Ren: Appl. Phys. Lett. Vol. 95 (2009), p.151906.

Google Scholar

[7] X. Ren, Y. Wang, K. Otsuka, P. Lloveras, T. Castán, M. Porta, A. Planes and A. Saxena: MRS Bull. Vol. 34 (2009), p.838.

DOI: 10.1557/mrs2009.234

Google Scholar

[8] Z. Zhang, Y. Wang, D. Wang, Y. Zhou, K. Otsuka and X. Ren: Phys. Rev. B Vol. 81 (2010), p.224102.

Google Scholar

[9] X. Ren, Y. Wang, Y. Zhou, Z. Zhang, D. Wang, G. Fan, K. Otsuka, T. Suzuki, Y. Ji, J. Zhang, Ya. Tian, S. Hou, and X. Ding: Phil. Mag. Vol. 90 (2010), p.141.

Google Scholar

[10] F. M. Mazzolai, A. Biscarini, B. Coluzzi and G. Mazzolai: Appl. Phys. Lett. Vol. 85 (2004), p.2756.

DOI: 10.1063/1.1799247

Google Scholar

[11] G. Fan, Y. Zhou, K. Otsuka, X. Ren, K. Nakamura, T. Ohba, T. Suzuki, I. Yoshida and F. Yin: Acta Mater. Vol. 54 (2006), p.5221.

Google Scholar

[12] E. Villa, A. Tuissi, B. Coluzzi, A. Biscarini, G. Mazzolai and F. M. Mazzolai: Mater. Sci. and Eng. A Vol. 521-522 (2009), p.175.

DOI: 10.1016/j.msea.2008.09.153

Google Scholar

[13] G. Mazzolai, AIP Advances Vol. 1 (2011), p.040701.

Google Scholar

[14] G. Mazzolai: Int. J. Hydrogen Energy, 33 (2008) 7116.

Google Scholar

[15] G. Mazzolai, J. Alloys and Compds. Vol. 446-447 (2007), p.204.

Google Scholar

[16] R. Schmidt, M. Schlereth, H. Wipf, W. Assumus and M. Muellner : J. Phys. Cond. Matter 1 (1989), p.2473.

Google Scholar

[17] A. S. Nowick and B. S. Berry, Anelastic Relaxation in Crystalline Solids, Academic Press, 1972, p.99.

Google Scholar

[18] M. Ege, W. Ulfert and H. Kronmüller, J. de Physique 6, (1996) C8-43.

Google Scholar