Luminescence Dating: Basic Approach to Geochronology

Article Preview

Abstract:

Nowadays, luminescence dating technique has become one of the unique tools for paleoclimatic studies. A lot of progress has been made in terms of understanding the phenomenon of luminescence, development of methodology for luminescence dating and its application. Still there are several directions which require better understanding and refinement. This brief review article focuses on the different aspects of luminescence dating, covering basic theory behind luminescence and luminescence dating, procedural aspects, complications and issues of luminescence dating and future perspective.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

111-137

Citation:

Online since:

December 2013

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] G.F.J. Garlick, A.F. Gibson, The electron trap mechanism of luminescence in sulphide and silicate phosphors, Proceedings of Physics Society 60 (1948) 574-590.

DOI: 10.1088/0959-5309/60/6/308

Google Scholar

[2] J.T. Randall, M.H.F. Wilkins, Phosphorescence and electrontraps. I. The study of trap distributions, Proceedings of Royal Society of London 184 (1945) 366-389.

Google Scholar

[3] J.T. Randall, M.H.F. Wilkins, Phosphorescence and electrontraps. II. The interpretation of long period phosphorescence, Proceedings of Royal Society of London 184 (1945) 390-407.

DOI: 10.1098/rspa.1945.0025

Google Scholar

[4] M.J. Aitken, Thermoluminescence dating, Academic Press, London, 1985.

Google Scholar

[5] F. Urbach, Zur luminescenz der alkalihalogenide, Wiener Ber. 139 (1930) 363-372.

Google Scholar

[6] R.M. Bailey, Towards a general kinetic model for optically and thermally stimulated luminescence of quartz, Radiat. Meas. 33 (2001) 17-45.

DOI: 10.1016/s1350-4487(00)00100-1

Google Scholar

[7] M.R. Krbetschek, J. Gotze, A. Dietrich, T. Trautmann, Spectral information from minerals relevant for luminescence dating, Radiat. Meas. 27 (1997) 695-748.

DOI: 10.1016/s1350-4487(97)00223-0

Google Scholar

[8] C. Ankjærgaard, M. Jain, P.C. Hansen, H.B. Nielsen, Towards multi-exponential analysis in optically stimulated luminescence, J Phys D 43 (2010).

DOI: 10.1088/0022-3727/43/19/195501

Google Scholar

[9] M.K. Murari, Unpublished: Component specific luminescence of natural minerals and their application to dosimetry of natural radiation environment, Ph.D. thesis submitted in Physics Deptt., Mohan Lal Sukhadiya University, Udaipur, 2008.

Google Scholar

[10] A.S. Murray, R.G. Roberts, Measurement of the equivalent dose in quartz using a regenerative-dose single-aliquot protocol, Radiat. Meas. 29 (1998) 503-515.

DOI: 10.1016/s1350-4487(98)00044-4

Google Scholar

[11] L. Bøtter-Jensen, Optically Stimulated Luminescence, Elsevier Science B.V., Amsterdam, 2003.

Google Scholar

[12] S.W.S. McKeever, Thermoluminescence in quartz and silica, Radiat. Prot. Dosim. 8 (1984) 81-98.

Google Scholar

[13] K. Nassau, B.E. Prescott, A reinterpretation of smoky quartz Phys Status Solidi (A) Appl. Res. 29 (1975) 659-663.

DOI: 10.1002/pssa.2210290237

Google Scholar

[14] J. Isoya, J.A. Weil, L.E. Halliburton, EPR and ab initio SCF-MO studies of the Si-H-SI system in the E'4 center of a-quartz, The Journal of Chemical Physics 74 (1981) 5436-5448.

DOI: 10.1063/1.440948

Google Scholar

[15] G. Hütt, I. Jaek, J. Tchonka, Optical dating: K-feldspars optical response stimulation spectra, Quat. Sci. Rev. 7 (1988) 381.

DOI: 10.1016/0277-3791(88)90033-9

Google Scholar

[16] C. Ankjærgaard, M. Jain, Optically stimulated phosphorescence in orthoclase feldspar over the millisecond to second time scale, J. Lumin. 130 (2010) 2346-2355.

DOI: 10.1016/j.jlumin.2010.07.016

Google Scholar

[17] N.R.J. Poolton, K.B. Ozanyan, J. Wallinga, A.S. Murray, L. Bøtter-Jensen, Electrons in feldspar II: A consideration of the influence of conduction band-tail states on luminescence processes, Phys. Chem. Miner. 29 (2002) 217-225.

DOI: 10.1007/s00269-001-0218-2

Google Scholar

[18] K.J. Thomsen, A.S. Murray, M. Jain, L. Bøtter-Jensen, Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts, Radiat. Meas. 43 (2008) 1474-1486.

DOI: 10.1016/j.radmeas.2008.06.002

Google Scholar

[19] K.S. Heier, Trace elements in feldspars-A review, Norsk. Geol. Tid. 42 (1962) 415.

Google Scholar

[20] V.V. Lyakhovich, Trace Elements in rock-forming minerals of granitoides, Izd. Nedra Moscow, 1972.

Google Scholar

[21] I.E. Parsons, Feldspars and their reactions, Kluwer Academic Publications, Boston and London, 1994.

Google Scholar

[22] J.M. Rhodes, On the Chemistry of potassium feldspars in granitic rocks, Chemical Geology 4 (1969) 373-392.

DOI: 10.1016/0009-2541(69)90004-7

Google Scholar

[23] A.G. Wintle, Anomalous fading of thermo-luminescence in mineral samples, NATURE 245 (1973) 143-144.

DOI: 10.1038/245143a0

Google Scholar

[24] A.K. Singhvi, A possible correlation between the alpha efficiency and the anomalous fading characteristics, Ancient TL 14 (1981) 14.

Google Scholar

[25] N.A. Spooner, Optical dating: Preliminary results on the anomalous fading of luminescence from feldspars, Quat. Sci. Rev. 11 (1992) 139-145.

DOI: 10.1016/0277-3791(92)90055-d

Google Scholar

[26] N.A. Spooner, The anomalous fading of infrared-stimulated luminescence from feldspars, Radiat. Meas. 23 (1994) 625-632.

DOI: 10.1016/1350-4487(94)90111-2

Google Scholar

[27] R. Visocekas, N.A. Spooner, A. Zink, P. Blanc, Tunnel afterglow, fading and infrared emission in thermoluminescence of feldspars, Radiat. Meas. 23 (1994) 377-385.

DOI: 10.1016/1350-4487(94)90067-1

Google Scholar

[28] D.J. Huntley, M. Lamothe, Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating, Canadian Journal of Earth Sciences 38 (2001) 1093-1106.

DOI: 10.1139/e01-013

Google Scholar

[29] R.H. Kars, J. Wallinga, K.M. Cohen, A new approach towards anomalous fading correction for feldspar IRSL dating - tests on samples in field saturation, Radiat. Meas. 43 (2008) 786-790.

DOI: 10.1016/j.radmeas.2008.01.021

Google Scholar

[30] P. Morthekai, M. Jain, A.S. Murray, K.J. Thomsen, L. Bøtter-Jensen, Fading characteristics of martian analogue materials and the applicability of a correction procedure, Radiat. Meas. 43 (2008) 672-678.

DOI: 10.1016/j.radmeas.2008.02.019

Google Scholar

[31] P. Morthekai, M. Jain, P.P. Cunha, J.M. Azevedo, A.K. Singhvi, An attempt to correct for the fading in million year old basaltic rocks, Geochronometria 38 (2011) 223-230.

DOI: 10.2478/s13386-011-0033-6

Google Scholar

[32] B. Li, S.H. Li, Luminescence dating of Chinese loess beyond 130 ka using the non-fading signal from K-feldspar, Quat. Geochronol. 10 (2012) 24-31.

DOI: 10.1016/j.quageo.2011.12.005

Google Scholar

[33] D.J. Huntley, An explanation of the power-law decay of luminescence, J. Phys. Condens. Matter 18 (2006) 1359-1365.

DOI: 10.1088/0953-8984/18/4/020

Google Scholar

[34] R. Visocekas, G. Guerin, TL dating of feldspars using their far-red emission to deal with anomalous fading, Radiat. Meas. 41 (2006) 942-947.

DOI: 10.1016/j.radmeas.2006.04.023

Google Scholar

[35] M. Fattahi, S. Stokes, Red luminescence from potassium feldspar for dating applications: A study of some properties relevant for dating, Radiat. Meas. 37 (2003) 647-660.

DOI: 10.1016/s1350-4487(03)00246-4

Google Scholar

[36] M. Fattahi, S. Stokes, Dating volcanic and related sediments by luminescence methods: A review, Earth Sci. Rev. 62 (2003) 229-264.

DOI: 10.1016/s0012-8252(02)00159-9

Google Scholar

[37] M. Fattahi, S. Stokes, Photomultiplier and filter combinations for the detection of relatively long wavelength (> 600 nm) luminescence emissions from feldspar, Ancient TL 21 (2003) 25-34.

Google Scholar

[38] M.R. Krbetschek, J. Götze, G. Irmer, U. Rieser, T. Trautmann, The red luminescence emission of feldspar and its wavelength dependence on K, Na, Ca - Composition, Mineralogy and Petrology 76 (2002) 167-177.

DOI: 10.1007/s007100200039

Google Scholar

[39] M.J. Aitken, M.S. Tite, J. Reid, Thermoluminescent dating of ancient ceramics, NATURE 202 (1964) 1032.

DOI: 10.1038/2021032b0

Google Scholar

[40] M.J. Aitken, D.W. Zimmerman, S.J. Fleming, Thermoluminescent dating of ancient pottery, NATURE 219 (1968) 442.

DOI: 10.1038/219442a0

Google Scholar

[41] R.B. Mazess, D.W. Zimmerman, Pottery dating from thermoluminescence, Science 152 (1966) 347.

DOI: 10.1126/science.152.3720.347

Google Scholar

[42] S.J. Fleming, Thermoluminescence techniques in archaeology, The Clarendon Press, London, 1979.

Google Scholar

[43] A.G. Wintle, D.J. Huntley, Thermolumienscence dating of deep-sea ocean core, NATURE 279 (1979).

Google Scholar

[44] A. Singhvi, G.A. Wagner, Thermoluminescence dating and its application to young sedimentary deposits, in: H. A.J. (Ed.) Dating Young Sediments, CCOP Technical Secreariat, Bangkok, Thailand, CCOP Technical Publication, 1986, pp.159-198.

Google Scholar

[45] A.K. Singhvi, Thermoluminescence research in India: a review of applications to archeology, sediments and meteorites, Ancient TL 1 (1983) 8-9.

Google Scholar

[46] A.K. Singhvi, M.R. Krbetschek, Luminescence dating : A review and a perspective for arid zone sediments, Ann. Arid Zone 35 (1996) 249-279.

Google Scholar

[47] D.J. Huntley, D.I. Godfrey-Smith, M.L.W. Thewalt, Optical dating of sediments, NATURE 313 (1985) 105-107.

DOI: 10.1038/313105a0

Google Scholar

[48] C. Ankjærgaard, M. Jain, R. Kalchgruber, T. Lapp, D. Klein, S.W.S. McKeever, A.S. Murray, P. Morthekai, Further investigations into pulsed optically stimulated luminescence from feldspars using blue and green light, Radiat. Meas. 44 (2009) 576-581.

DOI: 10.1016/j.radmeas.2009.02.017

Google Scholar

[49] G. Adamiec, M.J. Aitken, Dose-rate conversion factors: update, Ancient TL 16 (1998) 37-50.

Google Scholar

[50] J.R. Prescott, J.T. Hutton, Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations, Radiat. Meas. 23 (1994) 497-500.

DOI: 10.1016/1350-4487(94)90086-8

Google Scholar

[51] H.N. Chandel, A.D. Patel, H.R. Vaghela, G.P. Ubale, An effective and reusable sampling pipe for luminescence dating, Ancient TL 24 (2006) 21-22.

Google Scholar

[52] Y. Ichikawa, Dating of ancient ceramics by thermoluminescence, Bulletin of Institute of Chemical Research, Kyoto University, Japan 43 (1965) 1-6.

Google Scholar

[53] D.W. Zimmerman, Thermoluminescent dating using fine grains from pottery, Archaeometry 13 (1971) 29-52.

DOI: 10.1111/j.1475-4754.1971.tb00028.x

Google Scholar

[54] M.J. Aitken, S.G.E. Bowman, Thermoluminescent dating: assessment of alpha particle contribution. , Archaeometry 17 (1975) 132-138.

DOI: 10.1111/j.1475-4754.1975.tb00127.x

Google Scholar

[55] M.J. Aitken, Beta and gamma gradients, Nuclear tracks, 10 (1985) 647-653.

Google Scholar

[56] W.T. Bell, The assessment of radiation doserate for Thermoluminescence dating, Archaeometry 18 (1976) 107.

Google Scholar

[57] N. Chauhan, Unpublished: Spatial Distribution of Environmental Dose for Luminescence Dosimetry: Theoretical Estimation and Applications, Ph.D thesis submitted in Physics Department, Gujarat University, Ahmedabad, 2011.

Google Scholar

[58] N. Chauhan, S. Anand, T. Palani Selvam, Y.S. Mayya, A.K. Singhvi, Extending the maximum age achievable in the luminescence dating of sediments using large quartz grains: A feasibility study, Radiat. Meas. 44 (2009) 629-633.

DOI: 10.1016/j.radmeas.2009.06.009

Google Scholar

[59] N. Chauhan, A.K. Singhvi, Distribution in SAR palaeodoses due to spatial heterogeniety of natural beta dose., Geochronometria 38 (2011) 190.

DOI: 10.2478/s13386-011-0024-7

Google Scholar

[60] V. Mejdahl, Thermoluminescence dating: Beta dose attenuation in quartz grains, Archaeometry 21 (1979) 61-63.

DOI: 10.1111/j.1475-4754.1979.tb00241.x

Google Scholar

[61] J.M. Olley, A. Murray, R.G. Roberts, The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments, Quat. Sci. Rev. 15 (1996) 751-760.

DOI: 10.1016/0277-3791(96)00026-1

Google Scholar

[62] J.M. Olley, R.G. Roberts, A.S. Murray, Disequilibria in the uranium decay series in sedimentary deposits at Allen's Cave, Nullarbor Plain, Australia: Implications for dose rate determinations, Radiat. Meas. 27 (1997) 433-443.

DOI: 10.1016/s1350-4487(96)00114-x

Google Scholar

[63] D. Vandenberghe, C. Kasse, S.M. Hossain, F. De Corte, P. Van Den Haute, M. Fuchs, A.S. Murray, Exploring the method of optical dating and comparison of optical and 14C ages of Late Weichselian coversands in the southern Netherlands, J. Quat. Sci. 19 (2004) 73-86.

DOI: 10.1002/jqs.806

Google Scholar

[64] S. Ward, S. Stokes, R. Bailey, J. Singarayer, A. Goudie, H. Bray, Optical dating of quartz from young samples and the effects of pre-heat temperature, Radiat. Meas. 37 (2003) 401-407.

DOI: 10.1016/s1350-4487(03)00004-0

Google Scholar

[65] G.A.T. Duller, Equivalent dose determination using single aliquots, Nucl. Tracks Radiat. Meas. 18 (1991) 371-378.

DOI: 10.1016/1359-0189(91)90002-y

Google Scholar

[66] G.A.T. Duller, Luminescence dating of sediments using single aliquots: New procedures, Quat. Sci. Rev. 13 (1994) 149-156.

DOI: 10.1016/0277-3791(94)90041-8

Google Scholar

[67] V. Mejdahl, L. Bøtter-Jensen, Experience with the sara OSL method, Radiat. Meas. 27 (1997) 291-294.

DOI: 10.1016/s1350-4487(96)00149-7

Google Scholar

[68] A.S. Murray, A.G. Wintle, Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol, Radiat. Meas. 32 (2000) 57-73.

DOI: 10.1016/s1350-4487(99)00253-x

Google Scholar

[69] J.R. Prescott, D.J. Huntley, J.T. Hutton, Estimation of equivalent dose in thermoluminescence dating- the Australian slide method, Ancient TL 11 (1993) 1.

Google Scholar

[70] A.S. Murray, Developments in optically stimulated luminescence and photo-transferred thermoluminescence dating of young sediments: Application to a 2000-year sequence of flood deposits, Geochim. Cosmochim. Acta 60 (1996) 565-576.

DOI: 10.1016/0016-7037(95)00418-1

Google Scholar

[71] X.L. Wang, A.G. Wintle, Y.C. Lu, Testing a single-aliquot protocol for recuperated OSL dating, Radiat. Meas. 42 (2007) 380-391.

DOI: 10.1016/j.radmeas.2006.12.015

Google Scholar

[72] V. Pagonis, G. Adamiec, C. Athanassas, R. Chen, A. Baker, M. Larsen, Z. Thompson, Simulations of thermally transferred OSL signals in quartz: Accuracy and precision of the protocols for equivalent dose evaluation, Nucl Instrum Methods Phys. Res. Sect. B 269 (2011) 1431-1443.

DOI: 10.1016/j.nimb.2011.03.026

Google Scholar

[73] G. Adamiec, G.A.T. Duller, H.M. Roberts, A.G. Wintle, Improving the TT-OSL SAR protocol through source trap characterisation, Radiat. Meas., 45 (2010).

DOI: 10.1016/j.radmeas.2010.03.009

Google Scholar

[74] J.P. Buylaert, A.S. Murray, K.J. Thomsen, M. Jain, Testing the potential of an elevated temperature IRSL signal from K-feldspar, Radiat. Meas. 44 (2009) 560-565.

DOI: 10.1016/j.radmeas.2009.02.007

Google Scholar

[75] A.G. Wintle, A.S. Murray, Towards the development of a preheat procedure for OSL dating of quartz, Radiat. Meas. 29 (1998) 81-94.

DOI: 10.1016/s1350-4487(97)00228-x

Google Scholar

[76] N.G. Kiyak, T. Canel, Equivalent dose in quartz from young samples using the SAR protocol and the effect of preheat temperature, Radiat. Meas. 41 (2006) 917-922.

DOI: 10.1016/j.radmeas.2006.04.006

Google Scholar

[77] M.J. Aitken, B.W. Smith, Optical dating: Recuperation after bleaching, Quat. Sci. Rev. 7 (1988) 387-393.

DOI: 10.1016/0277-3791(88)90034-0

Google Scholar

[78] G. Kitis, G.S. Polymeris, N.G. Kiyak, Component-resolved thermal stability and recuperation study of the LM-OSL curves of four sedimentary quartz samples, Radiat. Meas. 42 (2007) 1273-1279.

DOI: 10.1016/j.radmeas.2007.05.050

Google Scholar

[79] A.S. Murray, A.G. Wintle, Sensitisation and stability of quartz OSL: Implications for interpretation of dose-response curves, Radiat. Prot. Dosim. 84 (1999) 427-432.

DOI: 10.1093/oxfordjournals.rpd.a032770

Google Scholar

[80] R.G. Roberts, N.A. Spooner, D.G. Questiaux, Palaeodose underestimates caused by extended-duration preheats in the optical dating of quartz, Radiat. Meas. 23 (1994) 647-653.

DOI: 10.1016/1350-4487(94)90114-7

Google Scholar

[81] A.G. Wintle, A.S. Murray, Luminescence sensitivity changes in quartz, Radiat. Meas. 30 (1999) 107-118.

Google Scholar

[82] A. Singhvi, S. Stokes, N. Chauhan, Y. Nagar, M. Jaiswal, Changes in natural OSL sensitivity during single aliquot regeneration procedure and their implications for equivalent dose determination, Geochronometria 38 (2011) 231-241.

DOI: 10.2478/s13386-011-0028-3

Google Scholar

[83] S.E. Lowick, M. Trauerstein, F. Preusser, Testing the application of post IR-IRSL dating to fine grain waterlain sediments, Quat. Geochronol. 8 (2012) 33-40.

DOI: 10.1016/j.quageo.2011.12.003

Google Scholar

[84] T. Reimann, S. Tsukamoto, Dating the recent past (<500 years) by post-IR IRSL feldspar - Examples from the North Sea and Baltic Sea coast, Quat. Geochronol. 10 (2012) 180-187.

DOI: 10.1016/j.quageo.2012.04.011

Google Scholar

[85] Ş. Vasiliniuc, D.A.G. Vandenberghe, A. Timar-Gabor, C. Panaiotu, C. Cosma, P. van den Haute, Testing the potential of elevated temperature post-IR IRSL signals for dating Romanian loess, Quat. Geochronol. 10 (2012) 75-80.

DOI: 10.1016/j.quageo.2012.02.014

Google Scholar

[86] L.J. Arnold, R.G. Roberts, R.F. Galbraith, S.B. DeLong, A revised burial dose estimation procedure for optical dating of youngand modern-age sediments, Quat. Geochronol. 4 (2009) 306-325.

DOI: 10.1016/j.quageo.2009.02.017

Google Scholar

[87] M.D. Bateman, C.D. Frederick, M.K. Jaiswal, A.K. Singhvi, Investigations into the potential effects of pedoturbation on luminescence dating, Quat. Sci. Rev. 22 (2003) 1169-1176.

DOI: 10.1016/s0277-3791(03)00019-2

Google Scholar

[88] M.D. Bateman, J.B. Murton, C. Boulter, The source of De variability in periglacial sand wedges: Depositional processes versus measurement issues, Quat. Geochronol. 5 (2010) 250-256.

DOI: 10.1016/j.quageo.2009.03.007

Google Scholar

[89] G.A.T. Duller, L. Bøtter-Jensen, A.S. Murray, Optical dating of single sand-sized grains of quartz: Sources of variability, Radiat. Meas. 32 (2000) 453-457.

DOI: 10.1016/s1350-4487(00)00055-x

Google Scholar

[90] A.S. Murray, R.G. Roberts, Determining the burial time of single grains of quartz using optically stimulated luminescence, Earth Plan. Sci. Lett. 152 (1997) 163-180.

DOI: 10.1016/s0012-821x(97)00150-7

Google Scholar

[91] R.P. Nathan, P.J. Thomas, M. Jain, A.S. Murray, E.J. Rhodes, Environmental dose rate heterogeneity of beta radiation and its implications for luminescence dating: Monte Carlo modelling and experimental validation, Radiat. Meas. 37 (2003) 305-313.

DOI: 10.1016/s1350-4487(03)00008-8

Google Scholar

[92] J. Olley, G. Caitcheon, A. Murray, The distribution of apparent dose as determined by optically stimulated luminescence in small aliquots of fluvial quartz: Implications for dating young sediments, Quat. Sci. Rev. 17 (1998) 1033-1040.

DOI: 10.1016/s0277-3791(97)00090-5

Google Scholar

[93] J.M. Olley, G.G. Caitcheon, R.G. Roberts, Origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence, Radiat. Meas. 30 (1999) 207-217.

DOI: 10.1016/s1350-4487(99)00040-2

Google Scholar

[94] R.G. Roberts, R.F. Galbraith, H. Yoshida, G.M. Laslett, J.M. Olley, Distinguishing dose populations in sediment mixtures: A test of single-grain optical dating procedures using mixtures of laboratory-dosed quartz, Radiat. Meas. 32 (2000) 459-465.

DOI: 10.1016/s1350-4487(00)00104-9

Google Scholar

[95] P.J. Thomas, M. Jain, N. Juyal, A.K. Singhvi, Comparison of single-grain and small-aliquot OSL dose estimates in <3000 years old river sediments from South India, Radiat. Meas. 39 (2005) 457-469.

DOI: 10.1016/j.radmeas.2004.07.005

Google Scholar

[96] D. Vandenberghe, S.M. Hossain, F. De Corte, P. Van den haute, Investigations on the origin of the equivalent dose distribution in a Dutch coversand, Radiat. Meas. 37 (2003) 433-439.

DOI: 10.1016/s1350-4487(03)00051-9

Google Scholar

[97] N. Agersnap Larsen, E. Bulur, L. Bøtter-Jensen, S.W.S. McKeever, Use of the LM-OSL technique for the detection of partial bleaching in quartz, Radiat. Meas. 32 (2000) 419-425.

DOI: 10.1016/s1350-4487(00)00071-8

Google Scholar

[98] R.M. Bailey, B.W. Smith, E.J. Rhodes, Partial bleaching and the decay form characteristics of quartz OSL, Radiat. Meas. 27 (1997) 123-136.

DOI: 10.1016/s1350-4487(96)00157-6

Google Scholar

[99] A.C. Cunningham, J. Wallinga, Selection of integration time intervals for quartz OSL decay curves, Quat. Geochronol. 5 (2010) 657-666.

DOI: 10.1016/j.quageo.2010.08.004

Google Scholar

[100] M. Fiebig, F. Preusser, Investigating the amount of zeroing in modern sediments of River Danube, Austria, Quat. Geochronol. 2 (2007) 143-149.

DOI: 10.1016/j.quageo.2006.09.001

Google Scholar

[101] R.M. Bailey, J.S. Singarayer, S. Ward, S. Stokes, Identification of partial resetting using De as a function of illumination time, Radiat. Meas. 37 (2003) 511-518.

DOI: 10.1016/s1350-4487(03)00063-5

Google Scholar

[102] R.M. Bailey, L.J. Arnold, Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose, Quat. Sci. Rev. 25 (2006) 2475-2502.

DOI: 10.1016/j.quascirev.2005.09.012

Google Scholar

[103] S.W. Choi, F. Preusser, U. Radtke, Dating of lower terrace sediments from the Middle Rhine area, Germany, Quat. Geochronol. 2 (2007) 137-142.

DOI: 10.1016/j.quageo.2006.03.005

Google Scholar

[104] A.C. Cunningham, J. Wallinga, P.S.J. Minderhoud, Expectations of scatter in equivalent-dose distributions when using multi-grain aliquots for osl dating, Geochronometria 38 (2011) 424-431.

DOI: 10.2478/s13386-011-0048-z

Google Scholar

[105] M. Jain, A.S. Murray, L. Bøtter-Jensen, Optically stimulated luminescence dating: How significant is incomplete light exposure in fluvial environments?, Quaternaire 15 (2004) 143-157.

DOI: 10.3406/quate.2004.1762

Google Scholar

[106] H. Rodnight, G.A.T. Duller, A.G. Wintle, S. Tooth, Assessing the reproducibility and accuracy of optical dating of fluvial deposits, Quat. Geochronol. 1 (2006) 109-120.

DOI: 10.1016/j.quageo.2006.05.017

Google Scholar

[107] L.J. Arnold, R.G. Roberts, Stochastic modelling of multi-grain equivalent dose (De) distributions: Implications for OSL dating of sediment mixtures, Quat. Geochronol. 4 (2009) 204-230.

DOI: 10.1016/j.quageo.2008.12.001

Google Scholar

[108] R.F. Galbraith, Radial plots: graphical assessment of spread in ages, Nucl. Tracks Radiat. Meas. 17 (1990) 207-214.

Google Scholar

[109] A.C. Cunningham, J. Wallinga, Optically stimulated luminescence dating of young quartz using the fast component, Radiat. Meas. 44 (2009) 423-428.

DOI: 10.1016/j.radmeas.2009.02.014

Google Scholar

[110] J.A. Durcan, G.A.T. Duller, The fast ratio: A rapid measure for testing the dominance of the fast component in the initial OSL signal from quartz, Radiat. Meas. 46 (2011) 1065-1072.

DOI: 10.1016/j.radmeas.2011.07.016

Google Scholar

[111] J. Wallinga, A.J.J. Bos, G.A.T. Duller, On the separation of quartz OSL signal components using different stimulation modes, Radiat. Meas. 43 (2008) 742-747.

DOI: 10.1016/j.radmeas.2008.01.013

Google Scholar

[112] M.K. Murari, H. Achyuthan, A.K. Singhvi, Luminescence studies on the sediments laid down by the December 2004 tsunami event: Prospects for the dating of palaeo-tsunamis and for the estimation of sediment fluxes, Curr. Sci. 92 (2007) 367-371.

Google Scholar

[113] K. Lepper, N.A. Larsen, S.W.S. McKeever, Equivalent dose distribution analysis of Holocene eolian and fluvial quartz sands from Central Oklahoma, Radiat. Meas. 32 (2000) 603-608.

DOI: 10.1016/s1350-4487(00)00093-7

Google Scholar

[114] M. Lamothe, M. Auclair, Assessing the datability of young sediments by IRSL using an intrinsic laboratory protocol, Radiat. Meas. 27 (1997) 107-117.

DOI: 10.1016/s1350-4487(96)00140-0

Google Scholar

[115] P. Thomas, A. Murray, K. Kjær, S. Funder, E. Larsen, Optically Stimulated Luminescence (OSL) dating of glacial sediments from Arctic Russia - Depositional bleaching and methodological aspects, Boreas 35 (2006) 587-599.

DOI: 10.1080/03009480600781933

Google Scholar

[116] A.S. Murray, J.M. Olley, G.G. Caitcheon, Measurement of equivalent doses in quartz from contemporary water- lain sediments using optically stimulated luminescence, Quat. Sci. Rev. 14 (1995) 365-371.

DOI: 10.1016/0277-3791(95)00030-5

Google Scholar

[117] A.S. Murray, J.I. Svendsen, J. Mangerud, V.I. Astakhov, Testing the accuracy of quartz OSL dating using a known-age Eemian site on the river Sula, northern Russia, Quat. Geochronol. 2 (2007) 102-109.

DOI: 10.1016/j.quageo.2006.04.004

Google Scholar

[118] R.M. Bailey, Paper II: The interpretation of measurement-time-dependent single-aliquot equivalent-dose estimates using predictions from a simple empirical model, Radiat. Meas. 37 (2003) 685-691.

DOI: 10.1016/s1350-4487(03)00079-9

Google Scholar

[119] Z. Jacobs, A.G. Wintle, R.G. Roberts, G.A.T. Duller, Equivalent dose distributions from single grains of quartz at Sibudu, South Africa: context, causes and consequences for optical dating of archaeological deposits, J. Archaeol. Sci. 35 (2008) 1808-1820.

DOI: 10.1016/j.jas.2007.11.027

Google Scholar

[120] C. Goedicke, Dating historical calcite mortar by blue OSL: Results from known age samples, Radiat. Meas. 37 (2003) 409-415.

DOI: 10.1016/s1350-4487(03)00010-6

Google Scholar

[121] Y.S. Mayya, P. Morthekai, M.K. Murari, A.K. Singhvi, Towards quantifying beta microdosimetric effects in single-grain quartz dose distribution, Radiat. Meas. 41 (2006) 1032-1039.

DOI: 10.1016/j.radmeas.2006.08.004

Google Scholar

[122] F. Preusser, D. Degering, Luminescence dating of the Niederweningen mammoth site, Switzerland, Quat. Int. 164-165 (2007) 106-112.

DOI: 10.1016/j.quaint.2006.12.002

Google Scholar

[123] R.F. Galbraith, R.G. Roberts, G. Laslett, H. Yoshida, J.M. Olley, Optical dating of single and multiple grains of quartz from jinmium rock shelter, northern australia: Part I, experimental design and statistical models, Archaeometry 41 (1999) 339-364.

DOI: 10.1111/j.1475-4754.1999.tb00987.x

Google Scholar

[124] J.M. Olley, P. De Deckker, R.G. Roberts, L.K. Fifield, H. Yoshida, G. Hancock, Optical dating of deep-sea sediments using single grains of quartz: A comparison with radiocarbon, Sediment. Geol. 169 (2004) 175-189.

DOI: 10.1016/j.sedgeo.2004.05.005

Google Scholar

[125] N. Juyal, L.S. Chamyal, S. Bhandari, R. Bhushan, A.K. Singhvi, Continental record of the southwest monsoon during the last 130 ka: evidence from the southern margin of the Thar Desert, India, Quat. Sci. Rev. 25 (2006) 2632-2650.

DOI: 10.1016/j.quascirev.2005.07.020

Google Scholar

[126] R.F. Galbraith, G.M. Laslett, Statistical models for mixed fission track ages, Nucl. Tracks Radiat. Meas. 21 (1993) 459-470.

DOI: 10.1016/1359-0189(93)90185-c

Google Scholar

[127] R.G. Roberts, R.F. Galbraith, J.M. Olley, H. Yoshida, G.M. Laslett, Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part II, results and implications, Archaeometry 41 (1999) 365-395.

DOI: 10.1111/j.1475-4754.1999.tb00988.x

Google Scholar

[128] R.F. Galbraith, R.G. Roberts, H. Yoshida, Error variation in OSL palaeodose estimates from single aliquots of quartz: A factorial experiment, Radiat. Meas. 39 (2005) 289-307.

DOI: 10.1016/j.radmeas.2004.03.023

Google Scholar

[129] G. Guérin, A.S. Murray, M. Jain, K.J. Thomsen, N. Mercier, How confident are we in the chronology of the transition between Howieson's Poort and Still Bay?, J. Hum. Evol. 64 (2013) 314-317.

DOI: 10.1016/j.jhevol.2013.01.006

Google Scholar

[130] R.F. Galbraith, P.F. Green, Estimating the component ages in a finite mixture, Nucl. Tracks Radiat. Meas. 17 (1990) 197-206.

Google Scholar

[131] K. Lepper, S.W.S. Mckeever, Y.S. Horowitz, L. Oster, An objective methodology for dose distribution analysis, Radiat. Prot. Dosim. 101 (2002) 349-352.

Google Scholar

[132] B. Mauz, S. Packman, A. Lang, The alpha effectiveness in silt-sized quartz: New data obtained by single and multiple aliquot protocols, Ancient TL 24 (2006) 47-52.

Google Scholar

[133] R.H. Biswas, M.A.J. Williams, R. Raj, N. Juyal, A.K. Singhvi, Methodological studies on luminescence dating of volcanic ashes, Quat. Geochronol. 17 (2013) 14-25.

DOI: 10.1016/j.quageo.2013.03.004

Google Scholar

[134] G. Kitis, G.S. Polymeris, V. Pagonis, N.C. Tsirliganis, Anomalous fading of OSL signals originating from very deep traps in Durango apatite, Radiat. Meas. 49 (2013) 73-81.

DOI: 10.1016/j.radmeas.2012.11.011

Google Scholar

[135] H.M. Roberts, Testing Post-IR IRSL protocols for minimising fading in feldspars, using Alaskan loess with independent chronological control, Radiat. Meas. 47 (2012) 716-724.

DOI: 10.1016/j.radmeas.2012.03.022

Google Scholar

[136] M. Lamothe, M. Barré, S. Huot, S. Ouimet, Natural luminescence and anomalous fading in K-feldspar, Radiat. Meas. 47 (2012) 682-687.

DOI: 10.1016/j.radmeas.2012.04.018

Google Scholar

[137] B. Li, S.H. Li, Luminescence dating of K-feldspar from sediments: A protocol without anomalous fading correction, Quat. Geochronol. 6 (2011) 468-479.

DOI: 10.1016/j.quageo.2011.05.001

Google Scholar

[138] A. Larsen, S. Greilich, M. Jain, A.S. Murray, Developing a numerical simulation for fading in feldspar, Radiat. Meas. 44 (2009) 467-471.

DOI: 10.1016/j.radmeas.2009.03.035

Google Scholar

[139] B. Li, S.H. Li, Investigations of the dose-dependent anomalous fading rate of feldspar from sediments, J. Phys. D 41 (2008).

DOI: 10.1088/0022-3727/41/22/225502

Google Scholar

[140] M. Lamothe, M. Auclair, C. Hamzaoui, S. Huot, Towards a prediction of long-term anomalous fading of feldspar IRSL, Radiat. Meas. 37 (2003) 493-498.

DOI: 10.1016/s1350-4487(03)00016-7

Google Scholar

[141] M. Auclair, M. Lamothe, S. Huot, Measurement of anomalous fading for feldspar IRSL using SAR, Radiat. Meas. 37 (2003) 487-492.

DOI: 10.1016/s1350-4487(03)00018-0

Google Scholar

[142] M. Fattahi, The dependence of orange-red IRSL decay curves of potassium feldspars on sample temperature, Radiat. Meas. 38 (2004) 287-298.

DOI: 10.1016/j.radmeas.2003.09.006

Google Scholar

[143] T. Lü, J. Sun, Luminescence sensitivities of quartz grains from eolian deposits in northern China and their implications for provenance, Quat. Res. (USA) 76 (2011) 181-189.

DOI: 10.1016/j.yqres.2011.06.015

Google Scholar

[144] A.O. Sawakuchi, M.W. Blair, R. DeWitt, F.M. Faleiros, T. Hyppolito, C.C.F. Guedes, Thermal history versus sedimentary history: OSL sensitivity of quartz grains extracted from rocks and sediments, Quat. Geochronol. 6 (2011) 261-272.

DOI: 10.1016/j.quageo.2010.11.002

Google Scholar

[145] S. Greilich, U.A. Glasmacher, G.A. Wagner, Spatially resolved detection of luminescence: A unique tool for archaeochronometry, Naturwissenschaften 89 (2002) 371-375.

DOI: 10.1007/s00114-002-0341-z

Google Scholar

[146] S. Greilich, U.A. Glasmacher, G.A. Wagner, Optical dating of granitic stone surfaces, Archaeometry 47 (2005) 645-665.

DOI: 10.1111/j.1475-4754.2005.00224.x

Google Scholar

[147] I.K. Bailiff, V.B. Mikhailik, Spatially-resolved measurement of optically stimulated luminescence and time-resolved luminescence, Radiat. Meas. 37 (2003) 151-159.

DOI: 10.1016/s1350-4487(02)00187-7

Google Scholar