p.1
p.35
p.75
p.111
p.139
p.179
p.229
p.247
Luminescence Dating: Basic Approach to Geochronology
Abstract:
Nowadays, luminescence dating technique has become one of the unique tools for paleoclimatic studies. A lot of progress has been made in terms of understanding the phenomenon of luminescence, development of methodology for luminescence dating and its application. Still there are several directions which require better understanding and refinement. This brief review article focuses on the different aspects of luminescence dating, covering basic theory behind luminescence and luminescence dating, procedural aspects, complications and issues of luminescence dating and future perspective.
Info:
Periodical:
Pages:
111-137
Citation:
Online since:
December 2013
Authors:
Price:
Сopyright:
© 2014 Trans Tech Publications Ltd. All Rights Reserved
Citation:
[1] G.F.J. Garlick, A.F. Gibson, The electron trap mechanism of luminescence in sulphide and silicate phosphors, Proceedings of Physics Society 60 (1948) 574-590.
[2] J.T. Randall, M.H.F. Wilkins, Phosphorescence and electrontraps. I. The study of trap distributions, Proceedings of Royal Society of London 184 (1945) 366-389.
[3] J.T. Randall, M.H.F. Wilkins, Phosphorescence and electrontraps. II. The interpretation of long period phosphorescence, Proceedings of Royal Society of London 184 (1945) 390-407.
[4] M.J. Aitken, Thermoluminescence dating, Academic Press, London, 1985.
[5] F. Urbach, Zur luminescenz der alkalihalogenide, Wiener Ber. 139 (1930) 363-372.
[6] R.M. Bailey, Towards a general kinetic model for optically and thermally stimulated luminescence of quartz, Radiat. Meas. 33 (2001) 17-45.
[7] M.R. Krbetschek, J. Gotze, A. Dietrich, T. Trautmann, Spectral information from minerals relevant for luminescence dating, Radiat. Meas. 27 (1997) 695-748.
[8] C. Ankjærgaard, M. Jain, P.C. Hansen, H.B. Nielsen, Towards multi-exponential analysis in optically stimulated luminescence, J Phys D 43 (2010).
[9] M.K. Murari, Unpublished: Component specific luminescence of natural minerals and their application to dosimetry of natural radiation environment, Ph.D. thesis submitted in Physics Deptt., Mohan Lal Sukhadiya University, Udaipur, 2008.
[10] A.S. Murray, R.G. Roberts, Measurement of the equivalent dose in quartz using a regenerative-dose single-aliquot protocol, Radiat. Meas. 29 (1998) 503-515.
[11] L. Bøtter-Jensen, Optically Stimulated Luminescence, Elsevier Science B.V., Amsterdam, 2003.
[12] S.W.S. McKeever, Thermoluminescence in quartz and silica, Radiat. Prot. Dosim. 8 (1984) 81-98.
[13] K. Nassau, B.E. Prescott, A reinterpretation of smoky quartz Phys Status Solidi (A) Appl. Res. 29 (1975) 659-663.
[14] J. Isoya, J.A. Weil, L.E. Halliburton, EPR and ab initio SCF-MO studies of the Si-H-SI system in the E'4 center of a-quartz, The Journal of Chemical Physics 74 (1981) 5436-5448.
DOI: 10.1063/1.440948
[15] G. Hütt, I. Jaek, J. Tchonka, Optical dating: K-feldspars optical response stimulation spectra, Quat. Sci. Rev. 7 (1988) 381.
[16] C. Ankjærgaard, M. Jain, Optically stimulated phosphorescence in orthoclase feldspar over the millisecond to second time scale, J. Lumin. 130 (2010) 2346-2355.
[17] N.R.J. Poolton, K.B. Ozanyan, J. Wallinga, A.S. Murray, L. Bøtter-Jensen, Electrons in feldspar II: A consideration of the influence of conduction band-tail states on luminescence processes, Phys. Chem. Miner. 29 (2002) 217-225.
[18] K.J. Thomsen, A.S. Murray, M. Jain, L. Bøtter-Jensen, Laboratory fading rates of various luminescence signals from feldspar-rich sediment extracts, Radiat. Meas. 43 (2008) 1474-1486.
[19] K.S. Heier, Trace elements in feldspars-A review, Norsk. Geol. Tid. 42 (1962) 415.
[20] V.V. Lyakhovich, Trace Elements in rock-forming minerals of granitoides, Izd. Nedra Moscow, 1972.
[21] I.E. Parsons, Feldspars and their reactions, Kluwer Academic Publications, Boston and London, 1994.
[22] J.M. Rhodes, On the Chemistry of potassium feldspars in granitic rocks, Chemical Geology 4 (1969) 373-392.
[23] A.G. Wintle, Anomalous fading of thermo-luminescence in mineral samples, NATURE 245 (1973) 143-144.
DOI: 10.1038/245143a0
[24] A.K. Singhvi, A possible correlation between the alpha efficiency and the anomalous fading characteristics, Ancient TL 14 (1981) 14.
[25] N.A. Spooner, Optical dating: Preliminary results on the anomalous fading of luminescence from feldspars, Quat. Sci. Rev. 11 (1992) 139-145.
[26] N.A. Spooner, The anomalous fading of infrared-stimulated luminescence from feldspars, Radiat. Meas. 23 (1994) 625-632.
[27] R. Visocekas, N.A. Spooner, A. Zink, P. Blanc, Tunnel afterglow, fading and infrared emission in thermoluminescence of feldspars, Radiat. Meas. 23 (1994) 377-385.
[28] D.J. Huntley, M. Lamothe, Ubiquity of anomalous fading in K-feldspars and the measurement and correction for it in optical dating, Canadian Journal of Earth Sciences 38 (2001) 1093-1106.
DOI: 10.1139/e01-013
[29] R.H. Kars, J. Wallinga, K.M. Cohen, A new approach towards anomalous fading correction for feldspar IRSL dating - tests on samples in field saturation, Radiat. Meas. 43 (2008) 786-790.
[30] P. Morthekai, M. Jain, A.S. Murray, K.J. Thomsen, L. Bøtter-Jensen, Fading characteristics of martian analogue materials and the applicability of a correction procedure, Radiat. Meas. 43 (2008) 672-678.
[31] P. Morthekai, M. Jain, P.P. Cunha, J.M. Azevedo, A.K. Singhvi, An attempt to correct for the fading in million year old basaltic rocks, Geochronometria 38 (2011) 223-230.
[32] B. Li, S.H. Li, Luminescence dating of Chinese loess beyond 130 ka using the non-fading signal from K-feldspar, Quat. Geochronol. 10 (2012) 24-31.
[33] D.J. Huntley, An explanation of the power-law decay of luminescence, J. Phys. Condens. Matter 18 (2006) 1359-1365.
[34] R. Visocekas, G. Guerin, TL dating of feldspars using their far-red emission to deal with anomalous fading, Radiat. Meas. 41 (2006) 942-947.
[35] M. Fattahi, S. Stokes, Red luminescence from potassium feldspar for dating applications: A study of some properties relevant for dating, Radiat. Meas. 37 (2003) 647-660.
[36] M. Fattahi, S. Stokes, Dating volcanic and related sediments by luminescence methods: A review, Earth Sci. Rev. 62 (2003) 229-264.
[37] M. Fattahi, S. Stokes, Photomultiplier and filter combinations for the detection of relatively long wavelength (> 600 nm) luminescence emissions from feldspar, Ancient TL 21 (2003) 25-34.
[38] M.R. Krbetschek, J. Götze, G. Irmer, U. Rieser, T. Trautmann, The red luminescence emission of feldspar and its wavelength dependence on K, Na, Ca - Composition, Mineralogy and Petrology 76 (2002) 167-177.
[39] M.J. Aitken, M.S. Tite, J. Reid, Thermoluminescent dating of ancient ceramics, NATURE 202 (1964) 1032.
DOI: 10.1038/2021032b0
[40] M.J. Aitken, D.W. Zimmerman, S.J. Fleming, Thermoluminescent dating of ancient pottery, NATURE 219 (1968) 442.
DOI: 10.1038/219442a0
[41] R.B. Mazess, D.W. Zimmerman, Pottery dating from thermoluminescence, Science 152 (1966) 347.
[42] S.J. Fleming, Thermoluminescence techniques in archaeology, The Clarendon Press, London, 1979.
[43] A.G. Wintle, D.J. Huntley, Thermolumienscence dating of deep-sea ocean core, NATURE 279 (1979).
[44] A. Singhvi, G.A. Wagner, Thermoluminescence dating and its application to young sedimentary deposits, in: H. A.J. (Ed.) Dating Young Sediments, CCOP Technical Secreariat, Bangkok, Thailand, CCOP Technical Publication, 1986, pp.159-198.
[45] A.K. Singhvi, Thermoluminescence research in India: a review of applications to archeology, sediments and meteorites, Ancient TL 1 (1983) 8-9.
[46] A.K. Singhvi, M.R. Krbetschek, Luminescence dating : A review and a perspective for arid zone sediments, Ann. Arid Zone 35 (1996) 249-279.
[47] D.J. Huntley, D.I. Godfrey-Smith, M.L.W. Thewalt, Optical dating of sediments, NATURE 313 (1985) 105-107.
DOI: 10.1038/313105a0
[48] C. Ankjærgaard, M. Jain, R. Kalchgruber, T. Lapp, D. Klein, S.W.S. McKeever, A.S. Murray, P. Morthekai, Further investigations into pulsed optically stimulated luminescence from feldspars using blue and green light, Radiat. Meas. 44 (2009) 576-581.
[49] G. Adamiec, M.J. Aitken, Dose-rate conversion factors: update, Ancient TL 16 (1998) 37-50.
[50] J.R. Prescott, J.T. Hutton, Cosmic ray contributions to dose rates for luminescence and ESR dating: Large depths and long-term time variations, Radiat. Meas. 23 (1994) 497-500.
[51] H.N. Chandel, A.D. Patel, H.R. Vaghela, G.P. Ubale, An effective and reusable sampling pipe for luminescence dating, Ancient TL 24 (2006) 21-22.
[52] Y. Ichikawa, Dating of ancient ceramics by thermoluminescence, Bulletin of Institute of Chemical Research, Kyoto University, Japan 43 (1965) 1-6.
[53] D.W. Zimmerman, Thermoluminescent dating using fine grains from pottery, Archaeometry 13 (1971) 29-52.
[54] M.J. Aitken, S.G.E. Bowman, Thermoluminescent dating: assessment of alpha particle contribution. , Archaeometry 17 (1975) 132-138.
[55] M.J. Aitken, Beta and gamma gradients, Nuclear tracks, 10 (1985) 647-653.
[56] W.T. Bell, The assessment of radiation doserate for Thermoluminescence dating, Archaeometry 18 (1976) 107.
[57] N. Chauhan, Unpublished: Spatial Distribution of Environmental Dose for Luminescence Dosimetry: Theoretical Estimation and Applications, Ph.D thesis submitted in Physics Department, Gujarat University, Ahmedabad, 2011.
[58] N. Chauhan, S. Anand, T. Palani Selvam, Y.S. Mayya, A.K. Singhvi, Extending the maximum age achievable in the luminescence dating of sediments using large quartz grains: A feasibility study, Radiat. Meas. 44 (2009) 629-633.
[59] N. Chauhan, A.K. Singhvi, Distribution in SAR palaeodoses due to spatial heterogeniety of natural beta dose., Geochronometria 38 (2011) 190.
[60] V. Mejdahl, Thermoluminescence dating: Beta dose attenuation in quartz grains, Archaeometry 21 (1979) 61-63.
[61] J.M. Olley, A. Murray, R.G. Roberts, The effects of disequilibria in the uranium and thorium decay chains on burial dose rates in fluvial sediments, Quat. Sci. Rev. 15 (1996) 751-760.
[62] J.M. Olley, R.G. Roberts, A.S. Murray, Disequilibria in the uranium decay series in sedimentary deposits at Allen's Cave, Nullarbor Plain, Australia: Implications for dose rate determinations, Radiat. Meas. 27 (1997) 433-443.
[63] D. Vandenberghe, C. Kasse, S.M. Hossain, F. De Corte, P. Van Den Haute, M. Fuchs, A.S. Murray, Exploring the method of optical dating and comparison of optical and 14C ages of Late Weichselian coversands in the southern Netherlands, J. Quat. Sci. 19 (2004) 73-86.
DOI: 10.1002/jqs.806
[64] S. Ward, S. Stokes, R. Bailey, J. Singarayer, A. Goudie, H. Bray, Optical dating of quartz from young samples and the effects of pre-heat temperature, Radiat. Meas. 37 (2003) 401-407.
[65] G.A.T. Duller, Equivalent dose determination using single aliquots, Nucl. Tracks Radiat. Meas. 18 (1991) 371-378.
[66] G.A.T. Duller, Luminescence dating of sediments using single aliquots: New procedures, Quat. Sci. Rev. 13 (1994) 149-156.
[67] V. Mejdahl, L. Bøtter-Jensen, Experience with the sara OSL method, Radiat. Meas. 27 (1997) 291-294.
[68] A.S. Murray, A.G. Wintle, Luminescence dating of quartz using an improved single-aliquot regenerative-dose protocol, Radiat. Meas. 32 (2000) 57-73.
[69] J.R. Prescott, D.J. Huntley, J.T. Hutton, Estimation of equivalent dose in thermoluminescence dating- the Australian slide method, Ancient TL 11 (1993) 1.
[70] A.S. Murray, Developments in optically stimulated luminescence and photo-transferred thermoluminescence dating of young sediments: Application to a 2000-year sequence of flood deposits, Geochim. Cosmochim. Acta 60 (1996) 565-576.
[71] X.L. Wang, A.G. Wintle, Y.C. Lu, Testing a single-aliquot protocol for recuperated OSL dating, Radiat. Meas. 42 (2007) 380-391.
[72] V. Pagonis, G. Adamiec, C. Athanassas, R. Chen, A. Baker, M. Larsen, Z. Thompson, Simulations of thermally transferred OSL signals in quartz: Accuracy and precision of the protocols for equivalent dose evaluation, Nucl Instrum Methods Phys. Res. Sect. B 269 (2011) 1431-1443.
[73] G. Adamiec, G.A.T. Duller, H.M. Roberts, A.G. Wintle, Improving the TT-OSL SAR protocol through source trap characterisation, Radiat. Meas., 45 (2010).
[74] J.P. Buylaert, A.S. Murray, K.J. Thomsen, M. Jain, Testing the potential of an elevated temperature IRSL signal from K-feldspar, Radiat. Meas. 44 (2009) 560-565.
[75] A.G. Wintle, A.S. Murray, Towards the development of a preheat procedure for OSL dating of quartz, Radiat. Meas. 29 (1998) 81-94.
[76] N.G. Kiyak, T. Canel, Equivalent dose in quartz from young samples using the SAR protocol and the effect of preheat temperature, Radiat. Meas. 41 (2006) 917-922.
[77] M.J. Aitken, B.W. Smith, Optical dating: Recuperation after bleaching, Quat. Sci. Rev. 7 (1988) 387-393.
[78] G. Kitis, G.S. Polymeris, N.G. Kiyak, Component-resolved thermal stability and recuperation study of the LM-OSL curves of four sedimentary quartz samples, Radiat. Meas. 42 (2007) 1273-1279.
[79] A.S. Murray, A.G. Wintle, Sensitisation and stability of quartz OSL: Implications for interpretation of dose-response curves, Radiat. Prot. Dosim. 84 (1999) 427-432.
[80] R.G. Roberts, N.A. Spooner, D.G. Questiaux, Palaeodose underestimates caused by extended-duration preheats in the optical dating of quartz, Radiat. Meas. 23 (1994) 647-653.
[81] A.G. Wintle, A.S. Murray, Luminescence sensitivity changes in quartz, Radiat. Meas. 30 (1999) 107-118.
[82] A. Singhvi, S. Stokes, N. Chauhan, Y. Nagar, M. Jaiswal, Changes in natural OSL sensitivity during single aliquot regeneration procedure and their implications for equivalent dose determination, Geochronometria 38 (2011) 231-241.
[83] S.E. Lowick, M. Trauerstein, F. Preusser, Testing the application of post IR-IRSL dating to fine grain waterlain sediments, Quat. Geochronol. 8 (2012) 33-40.
[84] T. Reimann, S. Tsukamoto, Dating the recent past (<500 years) by post-IR IRSL feldspar - Examples from the North Sea and Baltic Sea coast, Quat. Geochronol. 10 (2012) 180-187.
[85] Ş. Vasiliniuc, D.A.G. Vandenberghe, A. Timar-Gabor, C. Panaiotu, C. Cosma, P. van den Haute, Testing the potential of elevated temperature post-IR IRSL signals for dating Romanian loess, Quat. Geochronol. 10 (2012) 75-80.
[86] L.J. Arnold, R.G. Roberts, R.F. Galbraith, S.B. DeLong, A revised burial dose estimation procedure for optical dating of youngand modern-age sediments, Quat. Geochronol. 4 (2009) 306-325.
[87] M.D. Bateman, C.D. Frederick, M.K. Jaiswal, A.K. Singhvi, Investigations into the potential effects of pedoturbation on luminescence dating, Quat. Sci. Rev. 22 (2003) 1169-1176.
[88] M.D. Bateman, J.B. Murton, C. Boulter, The source of De variability in periglacial sand wedges: Depositional processes versus measurement issues, Quat. Geochronol. 5 (2010) 250-256.
[89] G.A.T. Duller, L. Bøtter-Jensen, A.S. Murray, Optical dating of single sand-sized grains of quartz: Sources of variability, Radiat. Meas. 32 (2000) 453-457.
[90] A.S. Murray, R.G. Roberts, Determining the burial time of single grains of quartz using optically stimulated luminescence, Earth Plan. Sci. Lett. 152 (1997) 163-180.
[91] R.P. Nathan, P.J. Thomas, M. Jain, A.S. Murray, E.J. Rhodes, Environmental dose rate heterogeneity of beta radiation and its implications for luminescence dating: Monte Carlo modelling and experimental validation, Radiat. Meas. 37 (2003) 305-313.
[92] J. Olley, G. Caitcheon, A. Murray, The distribution of apparent dose as determined by optically stimulated luminescence in small aliquots of fluvial quartz: Implications for dating young sediments, Quat. Sci. Rev. 17 (1998) 1033-1040.
[93] J.M. Olley, G.G. Caitcheon, R.G. Roberts, Origin of dose distributions in fluvial sediments, and the prospect of dating single grains from fluvial deposits using optically stimulated luminescence, Radiat. Meas. 30 (1999) 207-217.
[94] R.G. Roberts, R.F. Galbraith, H. Yoshida, G.M. Laslett, J.M. Olley, Distinguishing dose populations in sediment mixtures: A test of single-grain optical dating procedures using mixtures of laboratory-dosed quartz, Radiat. Meas. 32 (2000) 459-465.
[95] P.J. Thomas, M. Jain, N. Juyal, A.K. Singhvi, Comparison of single-grain and small-aliquot OSL dose estimates in <3000 years old river sediments from South India, Radiat. Meas. 39 (2005) 457-469.
[96] D. Vandenberghe, S.M. Hossain, F. De Corte, P. Van den haute, Investigations on the origin of the equivalent dose distribution in a Dutch coversand, Radiat. Meas. 37 (2003) 433-439.
[97] N. Agersnap Larsen, E. Bulur, L. Bøtter-Jensen, S.W.S. McKeever, Use of the LM-OSL technique for the detection of partial bleaching in quartz, Radiat. Meas. 32 (2000) 419-425.
[98] R.M. Bailey, B.W. Smith, E.J. Rhodes, Partial bleaching and the decay form characteristics of quartz OSL, Radiat. Meas. 27 (1997) 123-136.
[99] A.C. Cunningham, J. Wallinga, Selection of integration time intervals for quartz OSL decay curves, Quat. Geochronol. 5 (2010) 657-666.
[100] M. Fiebig, F. Preusser, Investigating the amount of zeroing in modern sediments of River Danube, Austria, Quat. Geochronol. 2 (2007) 143-149.
[101] R.M. Bailey, J.S. Singarayer, S. Ward, S. Stokes, Identification of partial resetting using De as a function of illumination time, Radiat. Meas. 37 (2003) 511-518.
[102] R.M. Bailey, L.J. Arnold, Statistical modelling of single grain quartz De distributions and an assessment of procedures for estimating burial dose, Quat. Sci. Rev. 25 (2006) 2475-2502.
[103] S.W. Choi, F. Preusser, U. Radtke, Dating of lower terrace sediments from the Middle Rhine area, Germany, Quat. Geochronol. 2 (2007) 137-142.
[104] A.C. Cunningham, J. Wallinga, P.S.J. Minderhoud, Expectations of scatter in equivalent-dose distributions when using multi-grain aliquots for osl dating, Geochronometria 38 (2011) 424-431.
[105] M. Jain, A.S. Murray, L. Bøtter-Jensen, Optically stimulated luminescence dating: How significant is incomplete light exposure in fluvial environments?, Quaternaire 15 (2004) 143-157.
[106] H. Rodnight, G.A.T. Duller, A.G. Wintle, S. Tooth, Assessing the reproducibility and accuracy of optical dating of fluvial deposits, Quat. Geochronol. 1 (2006) 109-120.
[107] L.J. Arnold, R.G. Roberts, Stochastic modelling of multi-grain equivalent dose (De) distributions: Implications for OSL dating of sediment mixtures, Quat. Geochronol. 4 (2009) 204-230.
[108] R.F. Galbraith, Radial plots: graphical assessment of spread in ages, Nucl. Tracks Radiat. Meas. 17 (1990) 207-214.
[109] A.C. Cunningham, J. Wallinga, Optically stimulated luminescence dating of young quartz using the fast component, Radiat. Meas. 44 (2009) 423-428.
[110] J.A. Durcan, G.A.T. Duller, The fast ratio: A rapid measure for testing the dominance of the fast component in the initial OSL signal from quartz, Radiat. Meas. 46 (2011) 1065-1072.
[111] J. Wallinga, A.J.J. Bos, G.A.T. Duller, On the separation of quartz OSL signal components using different stimulation modes, Radiat. Meas. 43 (2008) 742-747.
[112] M.K. Murari, H. Achyuthan, A.K. Singhvi, Luminescence studies on the sediments laid down by the December 2004 tsunami event: Prospects for the dating of palaeo-tsunamis and for the estimation of sediment fluxes, Curr. Sci. 92 (2007) 367-371.
[113] K. Lepper, N.A. Larsen, S.W.S. McKeever, Equivalent dose distribution analysis of Holocene eolian and fluvial quartz sands from Central Oklahoma, Radiat. Meas. 32 (2000) 603-608.
[114] M. Lamothe, M. Auclair, Assessing the datability of young sediments by IRSL using an intrinsic laboratory protocol, Radiat. Meas. 27 (1997) 107-117.
[115] P. Thomas, A. Murray, K. Kjær, S. Funder, E. Larsen, Optically Stimulated Luminescence (OSL) dating of glacial sediments from Arctic Russia - Depositional bleaching and methodological aspects, Boreas 35 (2006) 587-599.
[116] A.S. Murray, J.M. Olley, G.G. Caitcheon, Measurement of equivalent doses in quartz from contemporary water- lain sediments using optically stimulated luminescence, Quat. Sci. Rev. 14 (1995) 365-371.
[117] A.S. Murray, J.I. Svendsen, J. Mangerud, V.I. Astakhov, Testing the accuracy of quartz OSL dating using a known-age Eemian site on the river Sula, northern Russia, Quat. Geochronol. 2 (2007) 102-109.
[118] R.M. Bailey, Paper II: The interpretation of measurement-time-dependent single-aliquot equivalent-dose estimates using predictions from a simple empirical model, Radiat. Meas. 37 (2003) 685-691.
[119] Z. Jacobs, A.G. Wintle, R.G. Roberts, G.A.T. Duller, Equivalent dose distributions from single grains of quartz at Sibudu, South Africa: context, causes and consequences for optical dating of archaeological deposits, J. Archaeol. Sci. 35 (2008) 1808-1820.
[120] C. Goedicke, Dating historical calcite mortar by blue OSL: Results from known age samples, Radiat. Meas. 37 (2003) 409-415.
[121] Y.S. Mayya, P. Morthekai, M.K. Murari, A.K. Singhvi, Towards quantifying beta microdosimetric effects in single-grain quartz dose distribution, Radiat. Meas. 41 (2006) 1032-1039.
[122] F. Preusser, D. Degering, Luminescence dating of the Niederweningen mammoth site, Switzerland, Quat. Int. 164-165 (2007) 106-112.
[123] R.F. Galbraith, R.G. Roberts, G. Laslett, H. Yoshida, J.M. Olley, Optical dating of single and multiple grains of quartz from jinmium rock shelter, northern australia: Part I, experimental design and statistical models, Archaeometry 41 (1999) 339-364.
[124] J.M. Olley, P. De Deckker, R.G. Roberts, L.K. Fifield, H. Yoshida, G. Hancock, Optical dating of deep-sea sediments using single grains of quartz: A comparison with radiocarbon, Sediment. Geol. 169 (2004) 175-189.
[125] N. Juyal, L.S. Chamyal, S. Bhandari, R. Bhushan, A.K. Singhvi, Continental record of the southwest monsoon during the last 130 ka: evidence from the southern margin of the Thar Desert, India, Quat. Sci. Rev. 25 (2006) 2632-2650.
[126] R.F. Galbraith, G.M. Laslett, Statistical models for mixed fission track ages, Nucl. Tracks Radiat. Meas. 21 (1993) 459-470.
[127] R.G. Roberts, R.F. Galbraith, J.M. Olley, H. Yoshida, G.M. Laslett, Optical dating of single and multiple grains of quartz from Jinmium rock shelter, northern Australia: Part II, results and implications, Archaeometry 41 (1999) 365-395.
[128] R.F. Galbraith, R.G. Roberts, H. Yoshida, Error variation in OSL palaeodose estimates from single aliquots of quartz: A factorial experiment, Radiat. Meas. 39 (2005) 289-307.
[129] G. Guérin, A.S. Murray, M. Jain, K.J. Thomsen, N. Mercier, How confident are we in the chronology of the transition between Howieson's Poort and Still Bay?, J. Hum. Evol. 64 (2013) 314-317.
[130] R.F. Galbraith, P.F. Green, Estimating the component ages in a finite mixture, Nucl. Tracks Radiat. Meas. 17 (1990) 197-206.
[131] K. Lepper, S.W.S. Mckeever, Y.S. Horowitz, L. Oster, An objective methodology for dose distribution analysis, Radiat. Prot. Dosim. 101 (2002) 349-352.
[132] B. Mauz, S. Packman, A. Lang, The alpha effectiveness in silt-sized quartz: New data obtained by single and multiple aliquot protocols, Ancient TL 24 (2006) 47-52.
[133] R.H. Biswas, M.A.J. Williams, R. Raj, N. Juyal, A.K. Singhvi, Methodological studies on luminescence dating of volcanic ashes, Quat. Geochronol. 17 (2013) 14-25.
[134] G. Kitis, G.S. Polymeris, V. Pagonis, N.C. Tsirliganis, Anomalous fading of OSL signals originating from very deep traps in Durango apatite, Radiat. Meas. 49 (2013) 73-81.
[135] H.M. Roberts, Testing Post-IR IRSL protocols for minimising fading in feldspars, using Alaskan loess with independent chronological control, Radiat. Meas. 47 (2012) 716-724.
[136] M. Lamothe, M. Barré, S. Huot, S. Ouimet, Natural luminescence and anomalous fading in K-feldspar, Radiat. Meas. 47 (2012) 682-687.
[137] B. Li, S.H. Li, Luminescence dating of K-feldspar from sediments: A protocol without anomalous fading correction, Quat. Geochronol. 6 (2011) 468-479.
[138] A. Larsen, S. Greilich, M. Jain, A.S. Murray, Developing a numerical simulation for fading in feldspar, Radiat. Meas. 44 (2009) 467-471.
[139] B. Li, S.H. Li, Investigations of the dose-dependent anomalous fading rate of feldspar from sediments, J. Phys. D 41 (2008).
[140] M. Lamothe, M. Auclair, C. Hamzaoui, S. Huot, Towards a prediction of long-term anomalous fading of feldspar IRSL, Radiat. Meas. 37 (2003) 493-498.
[141] M. Auclair, M. Lamothe, S. Huot, Measurement of anomalous fading for feldspar IRSL using SAR, Radiat. Meas. 37 (2003) 487-492.
[142] M. Fattahi, The dependence of orange-red IRSL decay curves of potassium feldspars on sample temperature, Radiat. Meas. 38 (2004) 287-298.
[143] T. Lü, J. Sun, Luminescence sensitivities of quartz grains from eolian deposits in northern China and their implications for provenance, Quat. Res. (USA) 76 (2011) 181-189.
[144] A.O. Sawakuchi, M.W. Blair, R. DeWitt, F.M. Faleiros, T. Hyppolito, C.C.F. Guedes, Thermal history versus sedimentary history: OSL sensitivity of quartz grains extracted from rocks and sediments, Quat. Geochronol. 6 (2011) 261-272.
[145] S. Greilich, U.A. Glasmacher, G.A. Wagner, Spatially resolved detection of luminescence: A unique tool for archaeochronometry, Naturwissenschaften 89 (2002) 371-375.
[146] S. Greilich, U.A. Glasmacher, G.A. Wagner, Optical dating of granitic stone surfaces, Archaeometry 47 (2005) 645-665.
[147] I.K. Bailiff, V.B. Mikhailik, Spatially-resolved measurement of optically stimulated luminescence and time-resolved luminescence, Radiat. Meas. 37 (2003) 151-159.