Elastico-Mechanoluminescence of Thermoluminescent Crystals

Article Preview

Abstract:

Elastico-mechanoluminescence (EML) is a type of luminescence induced by elastic deformation of solids. The present paper reports the elastic-ML of thermoluminescent crystals such as X-or γ-irradiated alkali halide crystals, ZnS:Mn, and ultraviolet irradiated persistent luminescent crystals. Generally, all the elastico-mechanoluminescent crystals are thermoluminescent, but all the thermoluminescent crystals are not the mechanoluminescent. The elastico-mechanoluminescence spectra of crystals are similar to their thermoluminescence spectra. Both the elastico-mechanoluminescence and thermoluminescence arise due to the de-trapping of charge carriers. As elastico-ML of persistent luminescent crystals depends on both the density of filled traps and piezoelectric field, the intense thermoluminescent crystals may not be the intense mechanoluminescent crystals. When a sample of X-or γ-irradiated alkali halide crystal, UV-irradiated persistent luminescent microcrystals mixed in epoxy resin, or a film of ZnS:Mn nanoparticles is deformed in the elastic region by the pressure rising at fixed pressing rate for a particular time, or by a pressure of triangular form, or by a pressure pulse, then after a threshold pressure, initially the EML intensity increases with time, attains a maximum value and later on it decreases with time. In the first case, the fast decay time of EML is related to the time-constant for stopping the moving crosshead of the testing machine; in the second case, generally the fast decay does not appear; and in the third case, the fast decay time is equal to the rise time of the pressure pulse. However, in all the cases, the slow decay time is related to the lifetime of re-trapped charge carriers in the shallow traps lying in the region where the piezoelectric field is negligible. When the sample is deformed by the pressure rising at fixed pressing rate for a particular time, or pressure of triangular form, then the ML appears after a threshold pressure and the transient EML intensity increases linearly with the applied pressure; however, the total EML intensity increases quadratically with the applied pressure. The EML intensity of persistent luminescent crystals decreases with increasing number of pressings. However, when these crystals are exposed to UV light, then the recovery of EML intensity takes place. The mechanical interaction between the bending segment of dislocations and filled electron traps is able to explain the elastico-ML of X-or γ-irradiated alkali halide crystals. However, the piezoelectrically-induced de-trapping model is suitable for explaining the ML of persistent luminescent crystals and ZnS:Mn. The investigation of elastico-ML may be helpful in understanding the thermoluminescence and the investigation of thermoluminescence may be helpful in understanding elastico-ML. Furthermore, similar to the thermoluminescence, the mechanoluminescence may also find application in radiation dosimetry. Expressions are derived for the elastico-ML of thermoluminescent crystals, in which a good agreement is found between the experimental and theoretical results. Finally, the application of the elasticoML of thermoluminescent crystals in light sources, displays, imaging devices, sensing devices, radiation dosimetry and in non-destructive testing of materials are discussed.Contents of Paper

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-177

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B.P. Chandra, Mechanoluminescence, in:D.R. Vij (Ed.), Luminescence of Solids, Plenum Press, New York, 1998, pp.361-389.

Google Scholar

[2] B.P. Chandra, Mechanoluminescent Smart Materials and their Applications, in: A. Stashans, S. Gonzalez and H. P. Pinto (Eds.), Electronic and Catalytic Properties of Advanced Materials, Trans- world Research Network, Trivandrum, Kerala, India, 2011, pp.1-37.

Google Scholar

[3] F. Bacon, The Advancement of Learning, 1605: Book IV, Chap. 3.

Google Scholar

[4] K. Meyer, D. Orbikat, M. Rossberg, Progress in triboluminescence of alkali halides and doped zinc sulphides (I), Kristall U. Tech. 5 (1970) 5-49.

DOI: 10.1515/9783112653463-001

Google Scholar

[5] K. Meyer, D. Orbikat, M. Rossberg, Progress in triboluminescence of alkali halides and doped zinc sulphides (II), Kristall U. Tech. 5 (1970) 181-205.

DOI: 10.1002/crat.19700050202

Google Scholar

[6] A.J. Walton, Triboluminescence, Adv. Phys. 26(6) (1977) 887-948.

Google Scholar

[7] M.I. Molotskii, Generation of holes during the plastic deformation and fracture of crystals, Sov. Rev. Chem. 13 (1989) 1-85.

Google Scholar

[8] B.P. Chandra, Mechanoluminescence induced by elastic deformation of coloured alkali halide crystals using pressure steps, J. Lumin. 128 (2008) 1217-1224.

DOI: 10.1016/j.jlumin.2007.12.001

Google Scholar

[9] B.P. Chandra, R.N. Baghel, P.K. Singh, A.K. Luka, Deformation-induced excitation of the luminescence centres in coloured alkali halide crystals, Radiation Effects and Defects in Solids, 164 (2009) 500-507.

DOI: 10.1080/10420150802394167

Google Scholar

[10] B.P. Chandra, R. K. Goutam, V.K. Chandra, D.S. Raghuwanshi, A.K. Luka, R.N. Baghel, Mechanoluminescence induced by elastic and plastic deformation of coloured alkali halide crystals at fixed strain rates, Radiation Effects and Defects in Solids 165 (2010) 907-919.

DOI: 10.1080/10420150.2010.487903

Google Scholar

[11] C.N. Xu, Encyclopedia of Smart Materials, Vol. 1, edited by M. Schwarz, John Wiley & Sons, Inc. 2002, pp.190-201.

Google Scholar

[12] B.P. Chandra, Mechanoluminescence of nanoparticles, The Open Nanoscience Journal. 5 (Suppl. 1-M4) (2011) 45 -58.

Google Scholar

[13] B.P. Chandra, Mechanoluminescence and its applications, Int. J. Lum. and Applications, 2 (III) (2012) 44-72.

Google Scholar

[14] V.K. Chandra, B.P. Chandra, P. Jha, Strong luminescence induced by elastic deformation of piezoelectric crystals, Appl. Phys. Lett. 102 (2013) 241105-241108.

DOI: 10.1063/1.4811160

Google Scholar

[15] V.K. Chandra, B.P. Chandra, P. Jha, Self-recovery of mechanoluminescence in ZnS:Cu and ZnS:Mn phosphors by trapping of drifting charge carriers, Appl. Phys. Lett. 102 (2013) (in press).

DOI: 10.1063/1.4825360

Google Scholar

[16] S. M. Jeong, S. S. S.K. Lee, B. Choi, Mechanically driven light-generator with high durability, Appl. Phys. Lett. 102, (2013) 051110 – 1- 5.

DOI: 10.1063/1.4791689

Google Scholar

[17] S.M. Jeong, S. Song, S.K. Lee , N.Y.Ha, Colour manipulation of mechanoluminescence from stress-activated composite films, Adv. Mater. (2013).

DOI: 10.1002/adma.201301679

Google Scholar

[18] B.P. Chandra, C.N. Xu, H. Yamada, X.G. Zheng, Luminescence induced by elastic deformation of ZnS:Mn nanoparticles, J. Lumin. 130 (2010) 442-450.

DOI: 10.1016/j.jlumin.2009.10.010

Google Scholar

[19] V.K. Chandra, B.P. Chandra, Dynamics of the mechanoluminescence induced by elastic deformation of persistent luminescent crystals, J. Lumin. 132 (3) (2012) 858 - 869.

DOI: 10.1016/j.jlumin.2011.09.054

Google Scholar

[20] V. K. Chandra, B. P. Chandra, P. Jha, Models for intrinsic and extrinsic elastico and plastico- mechanoluminescence of solids, J. Lumin. 138 (2013) 267 - 280.

DOI: 10.1016/j.jlumin.2013.01.024

Google Scholar

[21] B.P. Chandra, J.I. Zink, Triboluminescence and the dynamics of crystal fracture, Phys. Rev. B 21 (1980) 816-826.

DOI: 10.1103/physrevb.21.816

Google Scholar

[22] B.P. Chandra, J.I. Zink, Mechanical characteristics and mechanism of the triboluminescence of fluorescent molecular crystals, J. Chem. Phys. 73 (1980) 5933-5943.

DOI: 10.1063/1.440151

Google Scholar

[23] G. Alzetta, I. Chudacek, R. Scarmozinno, Excitation of triboluminescence by deformation of single crystals, Phys. Stat. Sol. (a) 1(1970) 775-785.

DOI: 10.1002/pssa.19700010417

Google Scholar

[24] A.S. Crasto, R. Corey, J.T. Dickinson, R.V. Subramaniam, Y. Eckstein, Correlation of photon and acoustic emission with failure events in model composites, Composites Science and Technology 30 (1987) 35-58.

DOI: 10.1016/0266-3538(87)90086-8

Google Scholar

[25] I. Grabec, Triboluminescence of rubber, Polym. Lett. Ed. 12 (1974) 573-574.

Google Scholar

[26] V.M. Parfeev, Y. M. Tuta, U.E. Krauya, A.A. Scrukvskis, Damage accumulation in filled organosilicon rubber under pulsating loading, Mekhanika Kompozitnykh Materialov 1 (1988) 125-128.

DOI: 10.1007/bf00611344

Google Scholar

[27] B.P. Chandra, M. Elyas, Luminescence during release of pressure in X-irradiated alkali halide crystals, Kristall Und Technik 13 (1978) 1341-1343.

DOI: 10.1002/crat.19780131111

Google Scholar

[28] B.P. Chandra, Mechanoluminescence and high pressure photoluminescence of (Zn,Cd)S phosphors, Pramana J. Phys. 19 (1983) 455-465.

DOI: 10.1007/bf02847379

Google Scholar

[29] B.P. Chandra, S.Tiwari, M. Ramrakhiani, M.H. Ansari, Mechanoluminescenmce in centrosymmetric crystals, Crystal Res. Tech. 6 (1991) 767-781.

DOI: 10.1002/crat.2170260617

Google Scholar

[30] I. Sage, G. Bourhill, Triboluminescent materials for structural damage monitoring, J. Mater. Chem. 11 (2001) 231-245.

DOI: 10.1039/b007029g

Google Scholar

[31] H.C.R. Longchambon, Study of the spectrum of the light emitted in the triboluminescence of sugar, Hebd. Seances, C. R. Acad. Sci. Paris, 174 (1922) 1633.

Google Scholar

[32] H.C.R. Longchambon, Research experiments on the phenomenons of triboluminescence and of crystalloluminescence, Ph.D. (Docteur es Sciences en Physiques), L'Ecole Normale Superieure (1925).

Google Scholar

[33] A.J. Walton, P. Botos, The application of an image intensifier spectroscope in triboluminescent studies, J. Phys. E. Sci. Instrum., 11 (1978) 513.

DOI: 10.1088/0022-3735/11/6/005

Google Scholar

[34] L.M. Sweeting, L.M. Guido, An improved method for determining triboluminescence spectra, J. Lumin. 33 (1985) 167-173.

DOI: 10.1016/0022-2313(85)90015-8

Google Scholar

[35] L. M. Belyaev, Y. N. Martyshev, Triboluminescence of some alkali halide crystals, Phys. Stat. Sol. (b) 34 (1969) 57-62.

DOI: 10.1002/pssb.19690340105

Google Scholar

[36] G. E. Hardy, J. I. Zink, Triboluminescence and pressure dependence of the photoluminescence of tetrahedral manganese (II) complexes, Inorg. Chem. 15 (1976) 3061–3065.

DOI: 10.1021/ic50166a026

Google Scholar

[37] H.Y. Lu and S.Y. Chu, The mechanism and characteristics of ZnS based phosphor powders, J. Crys. Gr. 265 (2004) 476-486.

Google Scholar

[38] C.N. Xu, H. Yamada, X. Wang, X.G. Zheng, Strong elasticoluminescence from monoclinic-structure SrAl2O4, Appl. Phys. Lett. 74(2004) 3040 - 3042.

DOI: 10.1063/1.1705716

Google Scholar

[39] M. I. Molotskii, S. Z. Shmurak, Elementary acts of deformation luminescence, Phys. Lett. A 166 (1992) 286-291.

DOI: 10.1016/0375-9601(92)90378-y

Google Scholar

[40] C.N. Xu, T. Watanabe, M. Akiyama, X. G. Zheng, Artificial skin to sense mechanical stress by visible light emission, Appl. Phys. Lett. 74 (1999) 1236-1238.

DOI: 10.1063/1.123510

Google Scholar

[41] J. Botterman, K .V. Eeckhout, I. De Baere, D. Poelman, P. F. Smet, Mechanoluminescence in BaSi2O2N2:Eu, Acta Materialia 60 (2012) 5494-5500.

DOI: 10.1016/j.actamat.2012.06.055

Google Scholar

[42] P.Jha, B.P. Chandra, Impulsive excitation of mechanoluminescence in SrAl2O4:Eu, Dy phosphors prepared by solid state reaction technique in reduction atmosphere, J. Lumin. 143 (2013) 280 -287.

DOI: 10.1016/j.jlumin.2013.05.011

Google Scholar

[43] G.J. Yun, M.R. Rahimi, A.H. Gandomi, G.C. Lim, J.S. Choi, Stress sensing performance using mechanoluminescence of SrAl2O4:Eu (SAOE) and SrAl2O4:Eu,Dy (SAOED) under mechanical loadings, Smart Mater. Struct. 22 (2013) 055006-1-4.

DOI: 10.1088/0964-1726/22/5/055006

Google Scholar

[44] J.C. Zhang, C.N. Xu, S.Kamimura, Y. Terasawa, H. Yamada, X. Wang, An intense elastico-mechanoluminescence material CaZnOS:Mn2+ for sensing and imaging multiple mechanical stresses, Optics Express, 21 (2013) 1276 - 1286.

DOI: 10.1364/oe.21.012976

Google Scholar

[45] B.P. Chandra, V.K. Chandra, S.K. Mahobia, P. Jha, R. Tiwari, B. Haldar, Real-time mechanoluminescence sensing of the amplitude and duration of impact stress, Sensors and Actuators A 173 (2012) 9– 16.

DOI: 10.1016/j.sna.2011.09.043

Google Scholar

[46] J. M. Gomez-Ros, V. Correcher, J. Garcia- Guine, A. Delgado, Evolution of the trapped charge distribution due to trap emptying processes in a natural aluminosilicate, Radiat. Prot. Dosimetry 119 (2006) 93- 97.

DOI: 10.1093/rpd/nci522

Google Scholar

[47] A. N. Yazici, M. Oztas, M. Bedir, R. Kayali, Determination of the trapping parameters of ZnS thin films developed by chemical spraying technique, Turk. J. Phys. 26 (2002) 277 - 282.

Google Scholar

[48] V. Correcher, J. M. Gomez-Ros, J. Garcia-Guinea, M. Lis, L. Sanchez-Munoz, Calculation of the activation energy in a continuous trap distribution system of a charge of a charoite silicate using initial rise and TL glow curve fitting methods, Radiat. Meas. 43 (2008) 269 - 272.

DOI: 10.1016/j.radmeas.2007.10.032

Google Scholar

[49] B.P. Chandra, M. Ramrakhiani, P. Sahu, A.M. Rastogi, Correlation between deformation bleaching and mechanoluminescence in coloured alkali halide crystals. Pramana: J. of Phys. 54 (2000) 287-303.

DOI: 10.1007/s12043-000-0025-1

Google Scholar

[50] B. P. Chandra, R. K. Goutam, V. K. Chandra, R. P. Patel, A. K. Luka, R. N. Baghel, Luminescence induced by elastic and plastic deformation of II – VI semiconductors at fixed strain rates, Optoelectronics and Advanced Materials – Rapid Communications, 3(11) (2009), 1181 – 1189.

DOI: 10.1080/10420150.2010.487903

Google Scholar

[51] T. Zhan , C.N. Xu, O.Fukuda , H. Yamada, C. Li, Direct visualization of ultrasonic power distribution using mechanoluminescent film, Ultrasonics Sonochemistry 18 (2011) 436-439.

DOI: 10.1016/j.ultsonch.2010.07.017

Google Scholar

[52] V.D. Sonwane, A.S. Gaur, B. K. Haldar, S. Pandey, B.P. Chandra, Ultrasonic pulse induced mechanoluminescence of europium doped strontium aluminate micro-crystals, Recent Research in Science and Technology 4 (2012)106-108.

Google Scholar

[53] C.Li, C.N. Xu, H. Yamada, Y. Imai, H. Zhang, L. Zhang, Novel technique for viewing stress distribution with mechanoluminescence materials, Key Engg. Mater. 368-372 (2008) 1401-1404.

DOI: 10.4028/www.scientific.net/kem.368-372.1401

Google Scholar

[54] K.S. Sohn, S.Y. Seo, Y.N. Kwon, H.D. Park, Direct observation of crack tip stress field using the mechanoluminescence of SrAl2O4: (Eu,Dy,Nd), J. Am. Ceram. Soc. 85 (3) (2002) 712–714.

DOI: 10.1111/j.1151-2916.2002.tb00158.x

Google Scholar

[55] J.S. Kim, Y.N. Kwon, K.S. Sohn, Dynamic visualization of crack propagation and bridging stress using the mechano-luminescence of SrAl2O4:(Eu,Dy,Nd), Acta Materialia 51 (2003) 6437–6442.

DOI: 10.1016/j.actamat.2003.08.013

Google Scholar

[56] J.S. Kim, Y.N. Kwon, N. Shin, K.S. Sohn, Visualization of fractures in alumina ceramics by mechanoluminescence, Acta Materialia 53 (2005) 4337–4343.

DOI: 10.1016/j.actamat.2005.05.032

Google Scholar

[57] J.S. Kim, Y.N. Kwon, N. Shin, K.S. Sohn, Mechanoluminescent SrAl2O4: Eu,Dy phosphor for use in visualization of quasidynamic crack propagation, Appl. Phys. Lett. 90 (2007) 241916 -1-3.

DOI: 10.1063/1.2748100

Google Scholar

[58] W.J. Kim, J.M. Lee, J.S. Kim, C.J. Lee, Measuring high speed crack propagation in concrete fracture test using mechanoluminescent material, Smart Structures and Systems, 10 (2012) 547-555.

DOI: 10.12989/sss.2012.10.6.547

Google Scholar

[59] D.O. Olawale, W. Sullivan, T. Dickins, O. Okoli, B. Wang, SPIE (Proceedings Article), Mimicking the human nervous system with a triboluminescence sensory receptor for the structural health monitoring of composite structures

DOI: 10.1117/12.880574

Google Scholar

[60] D. Ono, C.N. Xu, C. Li and N. Bu, Visualization of internal defect of a pipe using mechanoluminescent sensor. J. Jpn. Soc. Exp. Mech. (JSEM) 10 (2010) 152-156.

Google Scholar

[61] K. Hyodo, K. Nonaka, C.N. Xu, Bio-mechanical optical imaging, AIST Today, No. 34 (2009-4) 13-14.

Google Scholar

[62] C.N. Xu, Monitoring system for safety management of structures using elastico-luminescent materials- Real-time visualization of the shape distribution and propagation of cracks using elasticoluminescent sensors, AIST Today 10 (2010) 18.

Google Scholar

[63] W.X. Wang, Y. Imai, C.N. Xu, T. Matsubara, Y. Takao, A new smart damage sensor using mechanoluminescence material, Mat. Sci. Forum 675-677 (2011) 1081-1084.

DOI: 10.4028/www.scientific.net/msf.675-677.1081

Google Scholar

[64] C. Li, C.N. Xu, Y. Imai, W.X. Wang, Real-time monitoring of dynamic stress concentration by mechanoluminescent sensing film, Appl. Mech. Mat. 13-14 (2008) 247-250.

DOI: 10.4028/www.scientific.net/amm.13-14.247

Google Scholar

[65] C. Li, C.N. Xu, Y. Imai, N. Bu, Real-time visualisation of the Portevin–Le Chatelier effect with mechanoluminescent-sensing film. Strain 47(6) (2011) 483-488.

DOI: 10.1111/j.1475-1305.2009.00713.x

Google Scholar

[66] N. Terasaki, C.N. Xu, Y. Imai, H. Yamada, Photocell system driven by mechanoluminescence, Jpn. J. Appl. Phys. 46 (2007) 2385–2388.

DOI: 10.1143/jjap.46.2385

Google Scholar