Optical and Morphological Studies of Doped Core Shell ZnS:Cu/ZnS Nanoparticles

Article Preview

Abstract:

The paper presents some results of study based on applications of ZnS core shell quantum dots (QDs) doped with Cu. Keeping the luminous properties in focus we synthesized the core shell QDs by chemical precipitation route, resulting in formation of core@shell QDs with ZnS core doped with copper and ZnS shell on it, i.e. [ZnS:Cu@Zn. We focus the application of these particles in field of OLEDs (AMOLED) to address the performance deficiencies like varying brightness of the different wavelength emitting LEDs, called Green Window problem. Efforts have been done to address the problems by synthesizing highly luminescent green emitting copper doped ZnS, core@shell QDs. Further a monolayer of core shell quantum dots was deposited on ITO by spin coating for analyzing the photometric properties of the QDs.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

247-254

Citation:

Online since:

December 2013

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] L. Cao, J. Zhang, S. Ren, S. Huang, Luminescence enhancement of core-shell ZnS:Mn/ZnS nanoparticles, Appl. Phys. Lett. 80 (23) (2002) 4300-4302.

DOI: 10.1063/1.1483113

Google Scholar

[2] M. Sharma, T. Jain, S. Singh, O.P. Pandey, Tunable emission in surface passivated Mn-ZnS nanophosphors and its application for glucose sensing, AIP Advances 2(1) (2012) 012183.

DOI: 10.1063/1.3698310

Google Scholar

[3] A. Singh, M. Sharma, O.P. Pandey and X. Wei., Highly luminescent ZnS:Mn/ZnS core- shell nanoparticles for solid state lightning, IEEE Nanotechnology, ISBN No. 978-1-4799- 0675-8/13/(2013)

DOI: 10.1109/nano.2013.6720906

Google Scholar

[4] R.G. Chaudhri, S. Paria, Core/Shell Nanoparticles: Classes, Properties, Synthesis Mechanisms, Characterization, and Applications, Chem. Rev. 112(4) (2012) 2373-2433.

DOI: 10.1021/cr100449n

Google Scholar

[5] Powder X-ray diffraction File No. 77-2100, JCPDS International Center for Diffraction Data, 1982.

Google Scholar

[6] J.C. Manifacier, M. De Murcia, J.P. Fillard, E. Vicario, Optical and Electrical Properties of SnO2 Thin Films in Relation to their Stoichiometric Deviation and their Crystalline Structure, Thin Solid Films 41(2) (1977) 127-135; doi: 0.1016/0040-6090(77)90395-9.

DOI: 10.1016/0040-6090(77)90395-9

Google Scholar

[7] J. Huang, Y. Yang, S. Xue, B. Yang, S. Liu, J. Shen, Photoluminescence and electroluminescence of ZnS:Cu nanocrystals in polymeric networks, Appl. Phys. Lett. 70 (1997) 2335; doi.org/.

DOI: 10.1063/1.118866

Google Scholar

[8] P. Peka, H.J. Schulz, Empirical one-electron model of optical transitions in Cu-doped ZnS and CdS, Physica B 193 (1994) 57- 65.

DOI: 10.1016/0921-4526(94)90052-3

Google Scholar

[9] H.V. Demira, S. Nizamoglub, T. Erdemb, Quantum dot integrated LEDs using photonic and excitonic color conversion, Nano Today 6 (2011) 632-647.

DOI: 10.1016/j.nantod.2011.10.006

Google Scholar

[10] S. Coe, W.K. Woo, M. Bawendi, V. Bulović, Electroluminescence from single monolayers of nanocrystals in molecular organic devices, Nature Letters 420 (2002) 800-803.

DOI: 10.1038/nature01217

Google Scholar

[11] S. Coe-Sullivan, J. S. Steckel, W.K. Woo, M.G. Bawendi, V. Bulovic, Large-Area Ordered Quantum-Dot Monolayer via Phase Separation during Spin-Casting, Adv. Func. Mater. 15 (2005) 1117-1124.

DOI: 10.1002/adfm.200400468

Google Scholar

[12] S. Coe-Sullivan, W.K. Woo, J.S. Steckel, M.G. Bawendi, V. Bulović, Tuning the performance of hybrid organic/inorganic quantum dot light-emitting devices, Org. Electron. 4 (2003) 123-130.

DOI: 10.1016/j.orgel.2003.08.016

Google Scholar

[13] J.S. Steckel, S. Coe-Sullivan, V. Bulović, M.G. Bawendi, 1.3 μm to 1.55 μm Tunable Electroluminescence from PbSe Quantum Dots Embedded within an Organic Device, Adv. Mater. 15 (2003) 1862-1866.

DOI: 10.1002/adma.200305449

Google Scholar

[14] C. Ruppe, A. Duparré, Roughness analysis of optical films and substrates by atomic force microscopy, Thin Solid Films 288 (1996) 8–13.

DOI: 10.1016/s0040-6090(96)08807-4

Google Scholar

[15] O. Rachel, N. J. Mathew, P.U. Rajalakshmi, Structural and Morphological Studies of Sb2S3 Thin Films. J. of Ovonic Research, 6 (6) (2010) 259-266.

Google Scholar

[16] A. Kassim, H. S. Min, L.K. Siang, S. Nagalingam, Surface Morphology of CuS Thin Films Observed by Atomic Force Microscopy, SQU (Sultan Qaboos University) Journal for Science, Malaysia, 16 (2011) 24-33.

DOI: 10.24200/squjs.vol16iss0pp24-33

Google Scholar