Experiment-Calculated Investigation of the Forced Convection of Nanofluids Using Single Fluid Approach

Article Preview

Abstract:

An experiment-calculated investigation of forced convection of nanofluids based on Al2O3 nanoparticles was carried out. The hydrodynamic description and a model of homogeneous nanofluids were used. The homogeneous nanofluids model assumes that the hydrodynamics and heat transfer can be described by conventional Navier-Stokes and heat transfer equations with the physical parameters corresponding to nanofluids. The results showed that this model very well described the experimental data in some cases. However, in some other cases, there are discrepancies between experiment and theory that can be explained by the real heterogeneity of nanofluids and the errors in the experimental determination of thermal conductivity and viscosity of nanofluids.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

123-138

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.I. Terekhov, S.V. Kalinina, V.V. Lemanov, The mechanism of heat transfer in nanofluids: state-of-the-art problem. Part 2. Convective heat exchange, Thermophysics & Aeromechanics (2010) 173-188.

DOI: 10.1134/s0869864310020010

Google Scholar

[2] B. Pak, Y.I. Cho, Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particle, Experimental heat transfer 11 (1998) 151–170.

DOI: 10.1080/08916159808946559

Google Scholar

[3] K.S. Hwang, J.H. Lee, S.P. Jang, Buoyancy-driven heat transfer of water-based Al2O3 nanofluids in a rectangular cavity, Int. J. of heat and mass transfer 50 (2007) 4003–4010.

DOI: 10.1016/j.ijheatmasstransfer.2007.01.037

Google Scholar

[4] V. Ya. Rudyak, A.A. Belkin, Modelling of the transport coefficients of nanofluids, Nanosystems: physics, chemistry, mathematics (2010) 156-177.

Google Scholar

[5] J. Вuongiorno, Convective transport in nanofluids, Transactions of ASME 128 (2006) 240-250.

Google Scholar

[6] V. Ya. Rudyak, A.V. Minakov, A.A. Gavrilov, A.A. Dekterev, Application of new numerical algorithm of solving the Navier–Stokes equations for modeling the work of a viscometer of the physical pendulum type, Thermophysics & Aeromechanics (2008).

DOI: 10.1134/s0869864308020169

Google Scholar

[7] V. Ya. Rudyak, A.V. Minakov, A.A. Gavrilov, A.A. Dekterev, Simulation of flows in micromixers, Thermophysics & Aeromechanics (2010) 565-576.

DOI: 10.1134/s0869864310040098

Google Scholar

[8] A.V. Minakov, V. Ya. Rudyak, A.A. Gavrilov, A.A. Dekterev, Mixing in T-shaped micromixer at average Reynolds number, Thermophysics & Aeromechanics (2012) 577-587.

DOI: 10.1134/s0869864312030043

Google Scholar

[9] A.V. Gavrilov, A.V. Minakov, A.A. Dekterev, V. Ya. Rudyak, Numerical algorithm for simulating laminar flows in an annular channel with eccentricity, Sib. J. Industr. Matem. 13 4 (2010) 3-14.

DOI: 10.1134/s1990478911040119

Google Scholar

[10] C.J. Ho, W.K. Liu, Y.S. Chang, C.C. Lin, Natural convection heat transfer of alumina-water nanofluid in vertical square enclosures: an experimental study, Int. J. Therm. Sci. (2010) 1345-1353.

DOI: 10.1016/j.ijthermalsci.2010.02.013

Google Scholar

[11] S.Q. Zhou, R. Ni, Measurement of the specific heat capacity of water-based Al2O3 nanofluid, Appl. Phys. Lett. (2008) 93-123.

Google Scholar

[12] S.E.B. Maiga, C.T. Nguyen, N. Galanis, G. Roy, Heat transfer behaviours of nanofluids in a uniformly heated tube, Superlatt. Microstruct. (2004) 543-557.

DOI: 10.1016/j.spmi.2003.09.012

Google Scholar

[13] C.T. Nguyen, F. Desgranges, G. Roy, N. Galanis, T. Mar´e, S. Boucher, H.A. Mintsa, Temperature and particle-size dependent viscosity data for water-based nanofluids – hysteresis phenomenon, Int. J. Heat Fluid Flow (2007) 1492-1506.

DOI: 10.1016/j.ijheatfluidflow.2007.02.004

Google Scholar

[14] S.M.S. Murshed, K.C. Leong, C. Yang, Investigations of thermal conductivity and viscosity of nanofluids, Int. J. Therm. Sci. (2008) 560-568.

DOI: 10.1016/j.ijthermalsci.2007.05.004

Google Scholar

[15] K.B. Anoop, S. Kabelac, T. Sundararajan, S.K. Das, Rheological and flow characteristics of nanofluids: influence of electroviscous effects and particle agglomeration, J. Appl. Phys. 106 (2009) 034909.

DOI: 10.1063/1.3182807

Google Scholar

[16] H. Chen, Y. Ding, Y. He, Ch. Tan, Rheological behavior of ethylene glycol based titania nanofluids, Chem. Phys. Lett. (2007) 333–337.

DOI: 10.1016/j.cplett.2007.07.046

Google Scholar

[17] W. Yu, S.U.S. Choi, The role of international layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model, Journal on Nanoparticle Research (2003) 167-171.

DOI: 10.1023/a:1024438603801

Google Scholar

[18] H.A. Minsta, G. Roy, C.T. Nguyen, D. Doucet, New temperature dependent thermal conductivity data for water-based nanofluids, Int. J. Therm. Sci. (2009) 363-371.

DOI: 10.1016/j.ijthermalsci.2008.03.009

Google Scholar

[19] S. Lee, S.U.S. Choi, S. Li, J.A. Eastman, Measuring thermal conductivity of fluids containing oxide nanoparticles, ASME J. Heat Transfer (1999) 280-289.

DOI: 10.1115/1.2825978

Google Scholar

[20] G. Roy, C.T. Nguyen, P. -R. Lajoie, Numerical investigation of laminar flow and heat transfer in a radial flow cooling system with the use of nanofluids, Superlatt. Microstruct. (2004) 497-511.

DOI: 10.1016/j.spmi.2003.09.011

Google Scholar

[21] S.K. Das, N. Putra, P. Thiesen, W. Roetzel, Temperature dependence of thermal conductivity enhancement for nanofluids, J. Heat Transfer (2003) 567-574.

DOI: 10.1115/1.1571080

Google Scholar

[22] K.B. Anoop, T. Sundararajan, S.K. Das, Effect of particle size on the convective heat transfer in nanofluid in the developing region, Int. J. of Heat and Mass Trans. (2009) 2189-2195.

DOI: 10.1016/j.ijheatmasstransfer.2007.11.063

Google Scholar

[23] W. Y. Lai, S. Vinod, P. E. Phelan, R. Prasher, Convective Heat Transfer for Water-Based Alumina Nanofluids in a Single 1. 02-mm Tube, Journal of heat transfer 131 (2009) 112401.

DOI: 10.1115/1.3133886

Google Scholar

[24] B. Kolade, E. Goodson, J.K. Eaton, Convective performance of nanofluids in a laminar thermally developing tube flow, Journal of heat transfer 131 (2009) 052402.

DOI: 10.1115/1.3013831

Google Scholar

[25] D. Liu, L. Yu, Single-phase thermal transport of nanofluids in a minichannel, Journal of heat transfer, 133 (2011) 031009.

Google Scholar

[26] A.S. Lobasov, A.V. Minakov, Computer modelling of heat and mass transfer processes in microchannels using CFD-package SigmaFlow, Computer research and modeling (2012) 781-793.

DOI: 10.20537/2076-7633-2012-4-4-781-792

Google Scholar

[27] A.S. Lobasov, A.V. Minakov, A.A. Dekterev, Simulation of fluid flow and convective heat transfer in microchannels, Comp. continuum mechanics (2012) 481-488.

Google Scholar

[28] F.R. Menter, Zonal two equation k-w turbulence models for aerodynamic flows / AIAA Paper № 93-2906 (1993).

Google Scholar

[29] M.S. Lobasova, A.S. Lobasov, Convective heat exchange in a single-phase medium: teaching manual, Siberian Federal University, Krasnoyarsk, (2012).

Google Scholar