Dynamical Study of a Molten Boundary Layer Ejected by Laminar Gas Flow

Article Preview

Abstract:

We consider in the present work the fusion laser cutting of stainless steel sheets under a nitrogen laminar gas jet. The molten metal is treated as a laminar and steady viscous incompressible fluid. The mathematical model describing our problem is set in terms of Navier-Stokes equations, solved numerically using the finite differences method, where the effect of the gas jet velocity on the molten boundary layer is considered. The generated shear stress occurring on the gas-liquid interface and its contribution in the momentum is carried out, and it is found that when the skin friction and the shear stress decrease, the thickness and the velocity at the edge of the molten boundary layer increase along the kerf surface. The layer thickness reduces when the assisting gas velocity is increased.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

88-93

Citation:

Online since:

January 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] B. S. Yilbas, A. Z. Sahin, Oxygen assisted laser cutting mechanism - a laminar boundary layer approach including the combustion process, Optics and Lasers Technology 27 (1995) 175–184.

DOI: 10.1016/0030-3992(95)93638-8

Google Scholar

[2] D. Petring, Laser cutting processes, in: J. F. Ready and D. F. Farson (Eds. ), LIA Handbook of Laser Materials Processing, Magnolia Publishing, Orlando, FL, 2001, p.425–426.

Google Scholar

[3] E. Beyer, T. Himmer, M. Lütke, F. Bartels, A. Mahrle, Stuttgart Laser Technologies Forum, German Scientific Society of Laser Technology, Stuttgart, (2008).

Google Scholar

[4] M. Vicanek, G. Simon, Momentum and heat transfer of an inert gas jet to the melt in laser cutting, Journal of Physics D Applied Physics 20 (1987) 1191–1196.

DOI: 10.1088/0022-3727/20/9/016

Google Scholar

[5] H. Golnabi, M. Bahar, Investigation of optimum condition in oxygen gas-assisted laser cutting, Optics and Laser Technology 41 (2009) 454-460.

DOI: 10.1016/j.optlastec.2008.08.001

Google Scholar

[6] W. Schulz, D. Becker, J. Franke, R. Kemmerling, G. Herziger, Heat conduction losses in laser cutting of metals, Journal of Physics D Applied Physics 26 (1993) 1357-1363.

DOI: 10.1088/0022-3727/26/9/003

Google Scholar

[7] W. Schulz, V. Kostrykin, M. Nießen, J. Michel, D. Petring, E. W. Kreutz, R. Poprawe, Dynamics of ripple formation and melt flow in laser beam cutting, Journal of Physics D Applied Physics 32 (1999) 1219–1228.

DOI: 10.1088/0022-3727/32/11/307

Google Scholar

[8] E. Abdulahdi, Etude de la découpe d'acier au carbone par laser CO2, Modélisation thermique et métallurgique du procédé, Thèse d'Etat de l'Ecole Nationale Supérieure des Arts et Métiers, Paris, (1997).

Google Scholar

[9] C. Mas, R. Fabbro, Y. Gouedard, Steady-state laser cutting modeling, Journal of Laser Applications 15 (2003) 145–152.

DOI: 10.2351/1.1567749

Google Scholar

[10] H. Schlichting, Boundary Layer Theory, McGraw-Hill, New York, (1982).

Google Scholar