[1]
R.L. Corral Bustamante, Ecuaciones Diferenciales con aplicaciones en Ciencias e Ingeniería, Alfaomega Grupo Editor, México, (2006).
Google Scholar
[2]
W. Fu, H. Fu, K. Skott , M. Yang, Modeling the spill in the Songhua River after the explosion in the petrochemical plant in Jilin, Environ. Sci. and Pollut. Res. 15 (2008) 178-181.
DOI: 10.1065/espr2007.11.457
Google Scholar
[3]
F. Crauste, M. Lhassan Hbid, A. Kacha, A delay reaction-diffusion model of the dynamics of botulinum in fish, Appl. Math. Model. 216 (2008) 17-29.
DOI: 10.1016/j.mbs.2008.07.012
Google Scholar
[4]
W.F. Smith, Foundations of Materials Science and Engineering, McGraw-Hill, New York, (2004).
Google Scholar
[5]
H.C. Berg, Random Walks in Biology, Princeton University Press, USA, (1977).
Google Scholar
[6]
R.B. Bird, W.E. Stewart, E.N. Lightfoot, Transport Phenomena, John Wiley & sons, USA, (2007).
Google Scholar
[7]
J. Crank, The Mathematics of Diffusion, Oxford University Press, Great Britain, (1980).
Google Scholar
[8]
J.F. James, A Students Guide to Fourier Transforms, Cambridge University Press, New York, (2009).
Google Scholar
[9]
H.P. Hsu, Análisis de Fourier, Addison-Wesley Iberoamericana S.A., Wilmington, Delaware, USA, (1987).
Google Scholar
[10]
J.F. James, A Student's Guide to Fourier Transforms: With Applications in Physics and Engineering, third ed., Cambridge University Press, Cambridge, (2011).
Google Scholar
[11]
T. Okino, New Mathematical Solution for Analyzing Interdiffusion Problems, Mater. Trans. 52 (2011) 2220-2227.
DOI: 10.2320/matertrans.m2011137
Google Scholar
[12]
G.B. Arfken, H.J. Weber, F.E. Harris, Mathematical Methods for Physicists, A Comprehensive Guide, seventh ed., Elsevier, Inc., USA, (2013).
Google Scholar
[13]
L. Corral, R. Rodríguez, Pérez, A., Fenómenos Físicos implicados a través de las Condiciones de Frontera en las Ecuaciones Diferenciales Parciales Gobernantes, Acta Latinoamericana de Matemática Educativa 13 (1999) 118-123.
DOI: 10.12802/relime.13.1914
Google Scholar
[14]
J.C. Chrispell, V.J. Ervin, E.W. Jenkins, A fractional step θ-method for convection–diffusion problems, J. Math. Anal. Appl. 333 (2007) 204-218.
DOI: 10.1016/j.jmaa.2006.11.059
Google Scholar
[15]
A. Elhakeem, W. Elshorbagy, R. Chebbi, Water Air Soil Pollut, 184 (2002) 242-254.
Google Scholar
[16]
L. Ferragut, M.I. Asensio, S. Monedero, A numerical method for solving convection-reaction-difussion multivalued equation in fire spread modelling, Advances Engn. Softw. 38 (2007) 366-371.
DOI: 10.1016/j.advengsoft.2006.09.007
Google Scholar
[17]
C. Galeano, J. Mantilla, D. Garzón, The streamline upwind Petrov-Galerkin stabilising method for the numerical solution of highly advective problems, Revista Ingeniería e Investigación 29 (2009) 81-87.
DOI: 10.15446/ing.investig.v29n2.15166
Google Scholar
[18]
D. Garzón, C. Galdeano, C. Duque, Aplicación del método Petrov-galerkin como técnica para la estabilización de la solución en problemas unidimensionales de convección-difusión-reacción, Revista Facultad de Ingeniería Universidad de Antioquía 47 (2009).
DOI: 10.1016/j.rimni.2013.07.001
Google Scholar
[19]
W. Guo, Y. Wang, Marine Pollut Bull, 58 (2009) 726-734.
Google Scholar
[20]
C.W. Fetter, Contaminant Hydrogeology, second ed., Macmillan, New Jersey, (1999).
Google Scholar
[21]
K. Hiscock, Hydrogeology, Principles and Practice, Blackwell, Oxford, (2005).
Google Scholar
[22]
J.P. Sauty, An analysis of hydrodispersive transfer in aquifers, Water Resour. Res. 16 (1980) 105-158.
DOI: 10.1029/wr016i001p00145
Google Scholar
[23]
P.A. Domenico, Physical and Quimical Hydrogeology, second ed., Jhon Wiley & Sons, Inc., New York, (1998).
Google Scholar