In Situ Optical Analysis of Structural Changes in Polylactic Acid (PLA) during the Gas Dissolution Process

Article Preview

Abstract:

An own-designed pressure vessel with glass windows has been employed to perform an in-situ characterization of the temporal evolution of the crystallization process of an amorphous polylactic acid (PLA) under different controlled CO2 pressures and temperatures. It has been proven that crystallinity can be related to optical parameters such as transmissivity, obtaining information about the whole process by optical measurements. The method has the advantage of measuring in-situ over bulk samples with a non-destructive tool. The obtained results have shown some unexpected trends that have been explained taking into account the complex phenomena occurring during the crystallization process of PLA in the presence of CO2 at high pressure.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

131-136

Citation:

Online since:

May 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] O. Martin, L. Averous. Polymer Vol. 42 (2001) 6209

Google Scholar

[2] M. Jamshidian, E.A. Tehrany, M. Imran, M. Jacquot, S. Desobry. Comprehensive Reviews in Food Science and Food Safety Vol. 9 (2010) 552-571

DOI: 10.1111/j.1541-4337.2010.00126.x

Google Scholar

[3] R. Auras, B. Harte, S. Selke. Macromolecular Bioscience Vol. 4 (2004) 835-864

DOI: 10.1002/mabi.200400043

Google Scholar

[4] B. Gupta, N. Revagade, J. Hilborn. Prog. Polym. Sci. Vol. 32 (2007) 455-482

Google Scholar

[5] L. Yu, K. Dean, L. Li. Prog. Polym. Sci. Vol. 31 (2006) 576-602

Google Scholar

[6] M. Yasuniwa, S. Tsubakihara, K. Iura, Y. Ono, Y. Dan, K. Takahashi. Polymer Vol. 47 (2006) 7554-7563

DOI: 10.1016/j.polymer.2006.08.054

Google Scholar

[7] M. Mihai, M.A. Huneault, B.D. Favis. J. Appl. Polym. Sci. Vol. 113 (2009) 2920-2932

Google Scholar

[8] W. Zhai, Y. Ko, W. Zhu, A. Wong, C.B. Park. Int. J. Mol. Sci. Vol. 10 (2009) 5381-5397

Google Scholar

[9] M. Nofar, W. Zhu, C.B. Park. Polymer Vol. 53 (2012) 3341-3353

Google Scholar

[10] X. Wang, V. Kumar, W. Li. Cellular Polymers Vol. 31 (2012) 1-17

Google Scholar

[11] A.R. Berens, G.S. Huvard, R.W. Korsmeyer, F.W. Kunig. J. Appl. Polym. Sci. Vol. 46 (1992) 231-242

DOI: 10.1002/app.1992.070460204

Google Scholar

[12] J.J. Watkins, T.J. McCarthy. Macromolecules Vol. 28 (1995) 4067-4074

Google Scholar

[13] A.R. Berens, G.S. Huvard, in: K.P. Johnston, J.M.L. Penninger (Eds). Supercritical Fluid Science and Technology, American Chemical Society, Washington D.C. (1989)

Google Scholar

[14] M.D. Abramoff, P.J. Magelhaes, S.J. Ram. Biophotonics Int. Vol. 11 (2004) 36

Google Scholar