A Thermo-Mechanical Model for a Counterflow Biomass Gasifier

Article Preview

Abstract:

This article presents a thermo-mechanical approach to investigate heat transfer between solid and fluid phases in a model gasifier. A two-temperature equation approach is applied in addition to a macroscopic model for laminar flow through a porous moving bed. Transport equations are discretized using the control-volume method and the system of algebraic equations is relaxed via the SIMPLE algorithm. The effects on inter-phase heat transfer due to variation of medium permeability, thermal conductivity and thermal capacity are analyzed. Results indicate that for smaller medium permeabilities, as well as for higher solid-to-fluid thermal capacity and thermal conductivity ratios, enhancement of heat transfer between phases is observed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

227-235

Citation:

Online since:

June 2014

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2014 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] Ryu C., Yang, Y. B., Khor, A., Yates, N. E., Sharifi, V. N., Swithenbank J., Effect of Fuel Properties on Biomass Combustion: Part I. Experiments—Fuel Type, Equivalence Ratio and Particle Size, Fuel, Vol. 85, p.1039–1046, 2006.

DOI: 10.1016/j.fuel.2005.09.019

Google Scholar

[2] Boman, C., Nordin, A., Thaning, L., 2003, Effects of Increased Biomass Pellet Combustion on Ambient Air Quality in Residential Areas – A Parametric Dispersion Modeling Study, Biomass and Bioenergy, 24, p.465 – 474.

DOI: 10.1016/s0961-9534(02)00146-0

Google Scholar

[3] Shimizu, T., Han, J., Choi, S., Kim, L., Kim, H., 2006, Fluidized-Bed Combustion Characteristics of Cedar Pellets by Using an Alternative Bed Material, Energy & Fuels, 20, 2737-2742.

DOI: 10.1021/ef0601723

Google Scholar

[4] Kayal, T. K. , Chakravarty, M., 1994, Mathematical Modeling of Continuous Updraft Gasification of Bundled Jute Stick – A Low Ash Content Woody Biomass, Bioresource Technology, 49, (1) 61-73.

DOI: 10.1016/0960-8524(94)90174-0

Google Scholar

[5] Rogel A., Aguillón J., The 2D Eulerian Approach of Entrained Flow and Temperature in a Biomass Stratified Downdraft Gasifier, American Journal of Applied Sciences, Vol. 3 (10), pp.2068-2075, 2006.

DOI: 10.3844/ajassp.2006.2068.2075

Google Scholar

[6] Nussbaumer T., Combustion and Co-combustion of Biomass: Fundamentals, Tecnologies, and Primary Measures for Emission Reduction, Energy & Fuels, Vol. 17, pp.1510-1521, 2003.

DOI: 10.1021/ef030031q

Google Scholar

[7] Pivem, A.C., de Lemos, M.J.S., Laminar Heat Transfer in a Moving Porous Bed Reactor Simulated with a Macroscopic Two - Energy Equation Model (submitted), (2011)

DOI: 10.1016/j.ijheatmasstransfer.2011.11.047

Google Scholar

[8] Saito, M.B., de Lemos, M.J.S., Interfacial heat transfer coefficient for non-equilibrium convective transport in porous media, International Communications In Heat And Mass Transfer, v. 32, n.5, pp.666-676, 2005.

DOI: 10.1016/j.icheatmasstransfer.2004.06.013

Google Scholar

[9] de Lemos, M.J.S and Saito, M.B., 2008. "Computation of turbulent heat transfer in a moving porous bed using a macroscopic two-energy equation model", International, Communications in Heat and Mass Transfer 35 1262–1266.

DOI: 10.1016/j.icheatmasstransfer.2008.08.014

Google Scholar

[10] E.J. Braga, M.J.S de Lemos, Laminar Natural Convection in Cavities Filled with Circular and Square Rods, Intern. Comm. Heat Mass Transfer 32 (10) (2005) 1289-1297.

DOI: 10.1016/j.icheatmasstransfer.2005.07.014

Google Scholar

[11] de Lemos, M.J.S., 2012. "Turbulence in Porous Media: Modeling and Applications", 2nd Ed., Elsevier, Amsterdam.

Google Scholar

[12] Saito, M.B.and de Lemos, M.J.S., 2006. "A correlation for interfacial heat transfer coefficient for turbulent flow over an array of square rods", J. Heat Transfer 128 444–452.

DOI: 10.1115/1.2175150

Google Scholar

[13] Wakao, N., Kaguei, S., Funazkri, T., 1979. "Effect of fluid dispersion coefficients on particle-fluid heat transfer coefficient in packed bed". Chemical Engineering Science, 34, 325-336.

DOI: 10.1016/0009-2509(79)85064-2

Google Scholar

[14] Kuwahara, F., Shirota, M. and Nakayama, A., 2001. "A numerical study of interfacial convective heat transfer coefficient in two-energy equation model for convection in porous media", Int. J. Heat Mass Transfer, 44, 1153-1159.

DOI: 10.1016/s0017-9310(00)00166-6

Google Scholar

[15] Saito, M.B., de Lemos, M.J.S., 2005, Interfacial Heat Transfer Coefficient for Non-Equilibrium Convective Transport in Porous Media, International Communications In Heat And Mass Transfer, 32(5), 666-676.

DOI: 10.1016/j.icheatmasstransfer.2004.06.013

Google Scholar

[16] Patankar, S.V., 1980, "Numerical Heat Transfer and Fluid Flow", Hemisphere, Washington, DC.

Google Scholar