Persistence Mechanisms and Applications of Long Afterglow Phosphors

Article Preview

Abstract:

This article presents a broad review of long persistence (LP) materials that are a special kind of photon energy storage and conversion materials. They are also known as long afterglow phosphors or long decay phosphors (LDP). These phosphors can be readily excited by any ordinary household lamp, sunlight and/or ambient room lights and glow continuously in the dark for hours together without involving any radioactive elements. It is the modifications that are made to crystalline host lattice that exhibit these unusual properties related to persistence due to effective doping of some transition or rare-earth ions. A slight variation in the processing parameters such as type of reducing atmosphere, stoichiometric excess of one or more constituents, the nature of fluxes, and the intentional addition of carbon or rare-earth halides can drastically shift the emission colors and persistence times of the LP phosphors in the visible spectrum. Historically, Cu-doped ZnS phosphor had been a traditional LP material with its afterglow time less than an hour. The emission color of these LP phosphors was confined between green and yellow-green region only. However, synthesis of blue and red-emitting phosphors with long persistence times had been always a challenging task. This review article covers the recent advances in the blue, green and red-emitting LP phosphors/nanophosphors, persistence mechanism involved and the basic problems associated with their luminescence efficiency and persistence times. Modifications to existing nanosynthesis protocols to formulate a nontoxic Green Chemistry Route are also presented.Contents of Paper1. Long Afterglow Phosphors

You might also be interested in these eBooks

Info:

Periodical:

Pages:

69-94

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P.F. Smet, D. Poelman, M.P. Hehlen, Persistent Phosphors, Opt. Mater. Express 2 (2012) 452–454.

DOI: 10.1364/ome.2.000452

Google Scholar

[2] E. Harvey, A. Newton, History of Luminescence from the Earliest Times until 1900, American Philosophical Society: Philadelphia, PA, USA, (1957).

DOI: 10.1126/science.126.3278.847-d

Google Scholar

[3] W. Hoogenstraaten, H.A. Klasens, Some Properties of Zinc Sulfide Activated with Copper and Cobalt, J. Electrochem. Soc. 100(1953) 366–375.

DOI: 10.1149/1.2781134

Google Scholar

[4] W.M. Yen, S. Shionoya, H. Yamamoto, Phosphor Handbook, 2nd ed. CRC Press/Taylor and Francis: Boca Raton, FL, USA, (2007).

Google Scholar

[5] W. de Groot, Luminescence Decay and Related Phenomena, Physica 6 (1939) 275-288.

Google Scholar

[6] F.A. Kroger, Some Aspects of Luminescence of Solids, Elsevier, Amsterdam, (1948).

Google Scholar

[7] D. Wang, Q. Yin, Y. Li, M. Wang, Concentration quenching of Eu2+ in SrO. Al2O3: Eu2+ phosphor, J. Lumin. 97 (2002) 1–6.

DOI: 10.1016/s0022-2313(01)00413-6

Google Scholar

[8] W. Lehmann, Activators and co-activators in calcium sulfide phosphors, J. Lumin. 5 (1972) 87-107.

DOI: 10.1016/0022-2313(72)90044-0

Google Scholar

[9] G.F.J. Garlick, D.E. Mason, Electron Traps and Infrared Stimulation of Phosphors, J. Electrochem. Soc. 96 (1949) 90-113.

DOI: 10.1149/1.2776775

Google Scholar

[10] T. Matsuzawa, Y. Aoki, N. Takeuchi, Y. Murayama, New long phosphorescent phosphor with high brightness, SrAl2O4: Eu2+, Dy3+. J. Electrochem. Soc. 143 (1996) 2670–2673.

DOI: 10.1149/1.1837067

Google Scholar

[11] V. Abbruscato, Optical and electrical properties of SrAl2O4: Eu2+. J. Electrochem. Soc. 118 (1971) 930–933.

Google Scholar

[12] H. Yamamoto, T. Matsuzawa, Mechanism of long phosphorescence of SrAl2O4: Eu2+, Dy3+ and CaAl2O4: Eu2+, Nd3+ J. Lumin. 72 (1997) 287-289.

DOI: 10.1016/s0022-2313(97)00012-4

Google Scholar

[13] Y. Lin, Z. Tang, Z. Zhang, X. Wang, J. Zhang, Preparation of a new long afterglow blue-emitting Sr2MgSi2O7-based photoluminescent phosphor. J. Mater. Sci. Lett. 20 (2001) 1505–1506.

Google Scholar

[14] E. Nakazawa, T. Mochida, Traps in SrAl2O4: Eu2+ phosphor with rare-earth ion doping J. Lumin, 72-74 (1997) 236-237.

DOI: 10.1016/s0022-2313(97)00043-4

Google Scholar

[15] T. Katsumata, T. Nabae, K. Sasajima, S. Komuro, T. Morikawa, Characteristics of Strontium Aluminate Crystals Used for Long-Duration Phosphors, J. Am. Ceram. Soc. 81 (1998) 413–416.

DOI: 10.1111/j.1151-2916.1998.tb02349.x

Google Scholar

[16] N. Suriyamurthy, B.S. Panigrahi, Effects of non-stoichiometry and substitution on photoluminescence and afterglow luminescence of Sr4Al14O25: Eu2+, Dy3+ phosphor, J. Lumin. 128 (2008) 1809-1814.

DOI: 10.1016/j.jlumin.2008.05.001

Google Scholar

[17] A. Nag, T.R.N. Kutty, Role of B2O3 on the phase stability and long phosphorescence of SrAl2O4: Eu, Dy, J. Alloys Compd. 354 (2003) 221-231.

DOI: 10.1016/s0925-8388(03)00009-4

Google Scholar

[18] H. Hosono, Takeru Kinoshita, Hiroshi Kawazoe, Masaaki Yamazaki, Yoshinori Yamamoto and Naruhito Sawanobori, Long lasting phosphorescence properties of Tb3+ activated reduced calcium aluminate glasses, J. Phys., C10 (1998) 9541-9447.

DOI: 10.1088/0953-8984/10/42/019

Google Scholar

[19] V.K. Jain, Charge carrier trapping and thermoluminescence in calcium fluoride-based phosphors, Radiat. Phys. Chem., 36 (1990) 47-57.

Google Scholar

[20] D. Jia, J. Zhu, and B. Wu, Trapping centers in CaS: Bi3+ and CaS: Eu2+, Tm3+, J. Electrochem. Soc., 147(2000) 386-389.

Google Scholar

[21] D. Jia, J. Zhu, and B. Wu, Influence of co-doping with Cl− on the luminescence of CaS: Eu2+, J. Electrochem. Soc., 147 (2000) 3948-3952.

Google Scholar

[22] V. Abbruscato, Optical and Electrical Properties of SrAl2O4: Eu2 +  J. Electrochem. Soc., 118 (1971) 930-933.

Google Scholar

[23] P. Dorenbos, Mechanism of persistent luminescence in Eu2+ and Dy3+ co-doped aluminate and silicate compounds, J. Electrochem. Soc., 152 (2005) H107-H110.

DOI: 10.1149/1.1926652

Google Scholar

[24] S.A. Basun, T. Danger, A.A. Kaplyanskii, D.S. McClure, K. Petermann, W.C. Wong, Optical and photoelectrical studies of charge-transfer processes in YAlO3: Ti crystals, Phys. Rev. B, 54 (1996), 6141-6149.

DOI: 10.1103/physrevb.54.6141

Google Scholar

[25] D. Jia, X.J. Wang, Yen, W.M., Delocalization, thermal ionization, and energy transfer in singly doped and co-doped CaAl4O7 and Y2O3, Phys. Rev. B, 69 (2004) 235113-235118.

Google Scholar

[26] D. Jia, W. Yen, Trapping mechanism associated with electron delocalization and tunneling of CaAl2O4: Ce3+, a persistent phosphor, J. Electrochem. Soc., 150 (2003) H61-H65.

DOI: 10.1149/1.1553792

Google Scholar

[27] D. Jia, X.J. Wang, and W.M. Yen, Electron traps in Tb3+ doped CaAl2O4, Chem. Phys. Lett., 363 (2002) 241-244.

DOI: 10.1016/s0009-2614(02)01170-3

Google Scholar

[28] U. Peskin, Analysis of a dissipative resonant tunneling trap by temperature-dependent Langevin–Schrodinger equations, J. Chem. Phys., 113 (2000) 7479-7487.

DOI: 10.1063/1.1313387

Google Scholar

[29] E. Nakazawa, S. Shionoya, W.M. Yen, Fundamentals of Luminescence in phosphor handbook, Eds., CRC Press, Boca Raton, FL, (1999), chap. 2, Sec. 6.

Google Scholar

[30] S.W. S McKeever, Thermoluminescence of Solids, Cambridge University Press, Cambridge, (1985).

Google Scholar

[31] M. Lastusaari, T. Laamanen, M. Malkamäki, K.O. Eskola, A. Kotlov, S. Carlson, E. Welter, H.F. Brito, M. Bettinelli, H. Jungner, J. Hölsä, The Bologna Stone: History's First Persistent Luminescent Material. Eur. J. Mineral., 24 (2012) 885–890.

DOI: 10.1127/0935-1221/2012/0024-2224

Google Scholar

[32] X. Lu, Silica encapsulation study on SrAl2O4: Eu2+, Dy3+ phosphors, Mater. Chem. Phys., 93 (2005) 526-530.

DOI: 10.1016/j.matchemphys.2005.04.002

Google Scholar

[33] T. Maldiney, G. Sraiki, B. Viana, D. Gourier, C. Richard, D. Scherman, M. Bessodes, K. Van den Eeckhout, D. Poelman, P. F Smet, In vivo Optical Imaging with Rare Earth Doped Ca2Si5N8 Persistent Luminescence Nanoparticles. Opt. Mater. Express 2 (2012).

DOI: 10.1364/ome.2.000261

Google Scholar

[34] W.M. Yen, S. Shionoya, H. Yamamoto, Phosphor Handbook, Second edition, The CRC Press, London, New York (2005).

Google Scholar

[35] Z. Xiao, Z. Xiao, Long afterglow silicate luminescent material and its manufacturing method, US Patent 6093346 (2000).

Google Scholar

[36] J.Y. Kuang, Y.L. Liu, Trapping effects in CdSiO3: In3+ Long Afterglow Phosphor. Chin. Phys. Lett. 23 (2006), 204–206.

Google Scholar

[37] Y. Liu, J. Kuang, B. Lei, C. Shi, Color-Control of Long-Lasting Phosphorescence (LLP) Through Rare Earth Ion-Doped Cadmium Metasilicate Phosphors. J. Mater. Chem. 15 (2005), 4025–403.

DOI: 10.1039/b507774e

Google Scholar

[38] D. Poelman, N. Avci, P.F. Smet, Measured Luminance and Visual Appearance of Multi-Color Persistent Phosphors. Opt. Express 17 (2009) 358–364.

DOI: 10.1364/oe.17.000358

Google Scholar

[39] Z. Pan, Lu, Y.Y. F. Liu, Sunlight-Activated Long-Persistent Luminescence in the Near Infrared from Cr3+ Doped Zinc Gallogermanates. Nat. Mater., 11(2012) 58–63.

DOI: 10.1038/nmat3173

Google Scholar

[40] F. Liu, W. Yan, Y. Chuang, J.; Zhen, Z.; Xie, J.; Pan, Z. Photostimulated Near-Infrared Persistent Luminescence as a New Optical Read-Out from Cr3+-Doped LiGa5O8. Sci. Rep., 3 (2013), 1554: 1–1554: 9.

DOI: 10.1038/srep01554

Google Scholar

[41] A. Bessière, S. Jacquart, K. Priolkar, A. Lecointre, B. Viana, D. Gourier, ZnGa2O4: Cr3+: A New Red Long-Lasting Phosphor with High Brightness. Opt. Express 19 (2011) 10131–10137.

DOI: 10.1364/oe.19.010131

Google Scholar

[42] S. Zhang, R. Pang, C. Li, Q. Su, Green Photoluminescence, But Blue Afterglow of Tb3+ Activated Sr4Al14O25. J. Lumin., 130 (2010), 2223–2225.

DOI: 10.1016/j.jlumin.2010.06.024

Google Scholar

[43] D. Jia, J. Zhu, and B. Wu, Influence of co-doping with Cl- on the luminescence of CaS: Eu2+, J. Electrochem. Soc., 147 (2000) 3948-3952.

Google Scholar

[44] X. Wang, Z. Zhang, Z. Tang, Y. Lin, Characterization and properties of a red and orange Y2O2S-based long afterglow phosphor, Mater. Chem. Phys., 80, (2003) 1-5.

DOI: 10.1016/s0254-0584(02)00097-4

Google Scholar

[45] D. Jia, and W.M. Yen, Enhanced V3+ center afterglow in MgAl2O4 by doping with Ce3+, J. Lumin., 101 (2003) 115-121.

DOI: 10.1016/s0022-2313(02)00394-0

Google Scholar

[46] X.J. Wang, Dongdong Jia, W.M. Yen, Mn2+-activated green, yellow, and red long persistent phosphors, J. Lumin., 102-103 (2003) 34-37.

DOI: 10.1016/s0022-2313(02)00541-0

Google Scholar

[47] D. Jia, R. S. Meltzer, W. M. Yen, W. Jia and X. Wang, Green phosphorescence of CaAl2O4: Tb3+, Ce3+ through persistent energy transfer, Appl. Phys. Lett., 80 (2002) 1535-1537.

DOI: 10.1063/1.1456955

Google Scholar

[48] D. Jia, X.J. Wang, W. Jia, W.M. Yen, Persistent energy transfer in CaAl2O4: Tb3+, Ce3+ J. Appl. Phys. 93 (2003) 148-152.

DOI: 10.1063/1.1525860

Google Scholar

[49] Z. Ruixia, Z. Jiahua, S. Lu, W. Xiao-Jun, Red phosphorescence in Sr4Al14O25: Cr3+, Eu2+, Dy3+ through persistent energy transfer, Appl. Phys. Lett. 88 (2006) 201916: 1- 201916: 3.

DOI: 10.1063/1.2205167

Google Scholar

[50] D. Jia, B. Wu, J. Zhu, Luminescence of Bi3+ and Eu2+ double centers doped in CaS host Acta Phys. Sin. 8 (1990) 813- 819.

Google Scholar

[51] A. K. Prodjosantoso, B. J. Kennedy, Solubility of SrAl2O4 in Cal2O4: A high resolution powder diffraction study, Mater. Res. Bull. 38 (2003) 79-87.

DOI: 10.1016/s0025-5408(02)01009-7

Google Scholar

[52] H. Ryu, B.K. Singh, K.S. Bartwal, Effect of Sr substitution on photoluminescent properties of BaAl2O4: Eu2+, Dy3+, Physica B 403 (2008) 126-130.

DOI: 10.1016/j.physb.2007.08.088

Google Scholar

[53] Jie Fu, Orange and Red Emitting Long‐Lasting Phosphors MO: Eu3 +   (M = Ca, Sr, Ba) Electrochem. Solid State Lett. 3 (2000) 350-351.

DOI: 10.1149/1.1391146

Google Scholar

[54] F. C. Palilla A. K. Levin, M. R. Tomkus, Fluorescent Properties of Alkaline Earth Aluminates of the Type MAl2 O4 Activated by Divalent Europium, J. Electrochem. Soc. 115 (1968) 642-644.

DOI: 10.1149/1.2411379

Google Scholar

[55] Yu-Lun Chang, H. I. Hsiang, M. T. Liang, Characterizations of Eu, Dy co-doped SrAl2O4 phosphors prepared by the solid-state reaction with B2O3 addition, J. alloys comp. 461 (2008) 598-603.

DOI: 10.1016/j.jallcom.2007.07.078

Google Scholar

[56] B. M. Mohamed, J. H. Sharp, Kinetics and mechanism of formation of monocalcium aluminate, CaAl2O4, J. Mater. Chem. 7(1997) 1595-1599.

DOI: 10.1039/a700201g

Google Scholar

[57] A. A. Goktas, M. C. Weinberg, Preparation and Crystallization of Sol-Gel Calcia-Alumina Compositions, J. Am. Ceram. Soc. 74 (1991) 1066-1070.

DOI: 10.1111/j.1151-2916.1991.tb04344.x

Google Scholar

[58] L. K. Kurihara, S. L. Suib, Sol-gel synthesis of ternary metal oxides. 1. Synthesis and characterization of MAl2O4 (M = Mg, Ni, Co, Cu, Fe, Zn, Mn, Cd, Ca, Hg, Sr, and Ba) and lead aluminum oxide (Pb2Al2O5), Chem. Mater. 5(1993) 609-613.

DOI: 10.1021/cm00029a006

Google Scholar

[59] Z. Tang, F. Zhang, Z. Zhang, C. Huang, Y. Lin, Luminescent properties of SrAl2O4: Eu, Dy material prepared by the gel method, J. Eu. Ceram. Soc. 20 (2000) 2129-2132.

DOI: 10.1016/s0955-2219(00)00092-3

Google Scholar

[60] I. C. Chen, T. M. Chen, Sol-Gel synthesis and the effect of boron addition on the phosphorescent properties of SrAl2O4: Eu2+, Dy3+ phosphors J. Mater. Res. 16 (2001) 644-651.

DOI: 10.1557/jmr.2001.0122

Google Scholar

[61] J. Sanchez-Benitez, A. De Andres, M. Marehal, E. Cordonocillo, M. Vallet Ragi, P. Escribano, Optical study of SrAl1. 7B0. 3O4: Eu, R (R=Nd, Dy) pigments with long-lasting phosphorescence for industrial uses, J. Solid State Chem. 171 (2003).

DOI: 10.1016/s0022-4596(02)00175-5

Google Scholar

[62] J. J. Kingsley, K. Suresh, K. C. Patil, Combustion synthesis of fine-particle metal aluminates, J. Mater. Sci. 25 (1990) 1305-1312.

DOI: 10.1007/bf00585441

Google Scholar

[63] A. C. Tas, Chemical Preparation of the Binary Compounds in the Calcia–Alumina System by Self-Propagating Combustion Synthesis, J. Ceram. Soc. 81 (1998) 2853-2863.

DOI: 10.1111/j.1151-2916.1998.tb02706.x

Google Scholar

[64] S. Shikao, J. Wang, Combustion synthesis of Eu3+ activated Y3Al5O12 phosphor nanoparticles, J. All. Comp. 327 (2000) 82-86.

DOI: 10.1016/s0925-8388(01)01399-8

Google Scholar

[65] T. R. N. Kutty, R. Jagannathan, R. P. Rao, Luminescence of Eu2+ in strontium aluminates prepared by the hydrothermal method, Mater. Res. Bull. 25 (1990) 1355-1362.

DOI: 10.1016/0025-5408(90)90217-p

Google Scholar

[66] D. Ravichandran, S. T. Johnson, S. Erdei, R. Roy, W. B. White, Crystal chemistry and luminescence of the Eu2+-activated alkaline earth aluminate phosphors, Displays 19 (1999) 197- 203.

DOI: 10.1016/s0141-9382(98)00050-x

Google Scholar

[67] T. Katsumata, T. Nabae, K. Sasajima, S. Kumuro, T. Morikawa, Effects of Composition on the Long Phosphorescent SrAl2O4: Eu2 + , Dy3 + Phosphor Crystals, J. Electrochem. Soc. 144 (1997)  L243-L245.

DOI: 10.1149/1.1837931

Google Scholar

[68] Chung-Hsin Lu, Shih-Yen Chen, Chia-Hao Hsu Nano sized strontium aluminate phosphors prepared via a reverse microemulsion route, Materials Science and Engineering B 140 (2007) 218–221.

DOI: 10.1016/j.mseb.2007.05.001

Google Scholar

[69] Tianyou Peng, Liu Huajun, Huanping Yang, Chunhua Yan, Synthesis of SrAl2O4: Eu2+, Dy3+ phosphor nanometer powders by sol-gel processes and its optical properties, material chemistry and physics 85 (2004) 68-72.

DOI: 10.1016/j.matchemphys.2003.12.001

Google Scholar

[70] Chengkang Changa, Jie Xua, Ling Jiang, Dali Maoa, Weijiang Ying, Luminescence of long-lasting CaAl2O4: Eu2+, Nd3+ phosphor by co-precipitation method, Materials Chemistry and Physics 98 (2006) 509–513.

DOI: 10.1016/j.matchemphys.2005.09.069

Google Scholar

[71] Harish Chander, D. Haranath, Virendra Shanker, Pooja Sharma, Synthesis of Nanocrystals of Long Persisting Phosphor by Modified Combustion Technique, Journal of crystal growth 271 (2004) 307-312.

DOI: 10.1016/j.jcrysgro.2004.07.026

Google Scholar

[72] Pooja Sharma, D. Haranath, Harish Chander, Sukhvir Singh, Green chemistry-mediated synthesis of nanostructures of afterglow phosphor, Appl. Surf. Sci. 254 (2008) 4052–4055.

DOI: 10.1016/j.apsusc.2007.12.040

Google Scholar

[73] W. de Groot, Saturation effects in the short-duration photoluminescence of zinc sulfide phosphors, Physica, 6 (1939) 393-400.

DOI: 10.1016/s0031-8914(39)90586-0

Google Scholar

[74] D. Curie, Luminescence in Crystals, Wiley, New York (1963) 5.

Google Scholar

[75] R. Chen, Y. Krish, Analysis of Thermally Stimulated Process, Pergamon Press (1981) 146.

Google Scholar

[76] A. Halperin, A. A. Braner, Evaluation of Thermal Activation Energies from Glow Curves, Phy. Rev. 117 (1960) 408-415.

DOI: 10.1103/physrev.117.408

Google Scholar

[77] R. Chen, On the Calculation of Activation Energies and Frequency Factors from Glow Curves, J. Appl. Phys. 40 (1969) 570-585.

DOI: 10.1063/1.1657437

Google Scholar

[78] R. Chen, Methods for kinetic analysis of thermally stimulated processes, J. Mater. Sci. 11 (1976) 1521-1541.

Google Scholar

[79] R. Chen, and S.W.S. McKeever, Theory of Thermoluminescence and Related Phenomena, World Scientific, Singapore, (1997).

Google Scholar

[80] S. Basun, G.F. Imbusch, D.D. Jia, W.M. Yen, The analysis of thermoluminescence glow curves, J. Lumin. 104 (2003) 283- 294.

DOI: 10.1016/s0022-2313(03)00082-6

Google Scholar

[81] D. Jia, Xiao-Jun Wang, W. Jia, W.M. Yen, Temperature-dependent photoconductivity of Ce3+ doped SrAl2O4, J. Lumin. 119-120 (2006) 55-58.

DOI: 10.1016/j.jlumin.2005.12.011

Google Scholar

[82] H. Yuan, The long-persistent photoconductivity of SrAl2O4: Eu2+, Dy3+ single crystal, J. Electrochem. Soc. 147 (2000) 3154-3156.

Google Scholar

[83] M. Kowatari, D. Koyama, Y. Satoh, K. Linuma, S. Uchida, The temperature dependence of luminescence from a long lasting phosphor exposed to ionizing radiations, Nucl. Instrum. Methods Phys. Res. A 480 (2000) 431-439.

DOI: 10.1016/s0168-9002(01)00922-6

Google Scholar

[84] M. Sengiku, Y. Oda, W. Jiang, K. Yatsui, Y. Ogura, K. Kato, K. Shinbo, F. Kaneko, The Preparation of SrAl2O4: Eu Phosphor Thin Films by Intense Pulsed Ion- Beam Evaporation Jap. Soc. App. Phys. (2001) 629-632.

DOI: 10.1143/jjap.40.1035

Google Scholar

[85] C. N. Xu, T. Watanabe, M. Akiyama, X. G. Zheng, Direct view of stress distribution in solid by mechanoluminescence App. Phys. Lett. 74 (1999) 2414 - 2416.

DOI: 10.1063/1.123865

Google Scholar

[86] M. Akiyama, C. Xu, Y. Liu, K. Nonaka, T. Watanabe, Influence of Eu, Dy co-doped strontium aluminate composition on mechanoluminescence intensity, J. Lumin. 97 (2002) 13-18.

DOI: 10.1016/s0022-2313(01)00419-7

Google Scholar

[87] H. Aizawa, T. Katsumata, J. Takanashi, K. Matsuzawa, S. Kamuro, T. Morikawa, E. Tota, Fiber-optic Thermometer Using Afterglow Phosphorescence from Long Duration Phosphor, Electrochem and Solid-State Lett. 5 (2002) H17-H19.

DOI: 10.1149/1.1499616

Google Scholar

[88] Y. Murayama,  N. Takeuchi, Y. Aoki, T. Matsuzawa, Phosphorescent Phosphor, United States Patent No. 5, 424, 006, (1995).

Google Scholar

[89] W. Lehmann, and F.M. Ryan, Fast cathodoluminescent calcium sulfide phosphors, J. Electrochem. Soc., 119 (1972) 275-277.

DOI: 10.1149/1.2404174

Google Scholar

[90] W. Lehmann, and F.M. Ryan, Cathodoluminescence of CaS: Ce3+ and CaS: Eu2+ phosphors, J. Electrochem Soc., 118 (1971) 447-482.

Google Scholar

[91] W. Lehmann, On the Optimum efficiency of cathodoluminescence of inorganic phosphors, J. Electrochem. Soc., 118 (1971) 1164-1166.

DOI: 10.1149/1.2408273

Google Scholar

[92] G.F.J. Garlick, D.E. Mason, Electron traps and infrared stimulation of phosphors, J. Electrochem. Soc., 96 (1949) 90-113.

DOI: 10.1149/1.2776775

Google Scholar

[93] C. R. Ronda, Phosphors for lamps and displays: an applicational view, J. Alloys Comp. 225 (1995) 534-538.

DOI: 10.1016/0925-8388(94)07065-2

Google Scholar

[94] O. A. Serra, S. A. Cicillini, R. R. Ishikj, A new procedure to obtain Eu3+ doped oxide and oxosalt phosphors, J. Alloys Comp. 303-304 (2000) 316-319.

DOI: 10.1016/s0925-8388(00)00595-8

Google Scholar

[95] Lun Ma and Wei Chen, ZnS: Cu, Co water-soluble afterglow nanoparticles: synthesis, luminescence and potential applications, Nanotechnology 21 (2010) 385604: 1- 385604: 8.

DOI: 10.1088/0957-4484/21/38/385604

Google Scholar

[96] T. Justel, H. Bechtel, W. Mayr, D. Wiechert, Blue emitting BaMgAl10O17: Eu with a blue body color, J. Lumin. 104 (2003) 137-143.

DOI: 10.1016/s0022-2313(03)00010-3

Google Scholar

[97] D. Jia, W. Jia,D. R. Evans, W. M. Dennis, Liu, Huimin, Zhu, Jing and W. M. Yen, Trapping processes in CaS: Eu2+, Tm3+, J. Appl. Phys, 88 (2000) 3402-3407.

DOI: 10.1063/1.1286419

Google Scholar

[98] Hom Nath Luitel, Preparation and properties of long persistent Sr4Al14O25, phosphors activated by rare earth metal ions, doctoral dissertation (2010), Saga University.

Google Scholar

[99] Ling Jianga, Chengkang Changa, Dali Maoa, Bin Zhangb A new long persistent blue-emitting Sr2ZnSi2O7: Eu2+, Dy3+ prepared by sol–gel method, Materials letters 58 (2004) 1825-1829.

DOI: 10.1016/j.matlet.2003.11.014

Google Scholar