p.1
p.15
p.69
p.95
p.121
p.177
p.195
p.215
Exploring Synthesis Techniques for Yttrium Based Phosphors
Abstract:
In recent years, the term ‘smart materials’ which means the potential of a material having novel functional abilities, has become a buzz word. Luminescent materials held a lion’s share amongst all functional materials. The research in these materials is nowadays becoming the frontline platform and has challenging options for the betterment of society. These materials have applications in diverse fields such as, radiation detection, monitoring and assessment, display devices (PDP, CRT, CTV, LCD, FPD, etc.), and Lighting devices (CFL, Hg Free lamps using VUV Xenon, Solid State lighting (SSL-LED blue chips, UV-LEDs, O-LEDs, etc.). The main and essential role is being played by the phosphors. The activity of the phosphor is also depending on the particle size and hence the nanophase phosphor developments are very important aspect of development of functional materials. It is also very much clear now that the method of synthesis controls/decides a particle size of the final product. A particular method is better for a specific phosphor for getting the desired particle size of the final product. Scaling is also very much essential for instituting the specific method of synthesis for desired phosphor. These aspects are important for commercial production.Looking at the applications specified in first paragraph, one thing is common which is red correction required for display devices or lighting devices. The red correction in full-colour display/white light emission is essentially done by using Y2O3:Eu3+ phosphor or Eu3+ doped yttrium based hosts. Red emission is of Eu3+ (5D0 →7Fj, where j could be predominantly 2, 1, 3) when symmetrically organized environment. In this context, the review of yttrium based phosphors is being presented. This also covers our experience in synthesis of yttrium based luminescent materials with different methods of synthesis and their comparative aspects with regard to luminescence properties.Contents of Paper
Info:
Periodical:
Pages:
95-119
Citation:
Online since:
January 2015
Authors:
Price:
Сopyright:
© 2015 Trans Tech Publications Ltd. All Rights Reserved
Citation:
* - Corresponding Author
[1] X.R. Hou, S.M. Zhou, H. Lin, H. Teng, Y.K. Li, W.J. Li, T.T. Jia, Violet and blue upconversion luminescence in Tm3+ /Yb3+ co-doped Y2O3 transparent ceramic, J. Appl. Phys. 107 (2010) 83-101.
DOI: 10.1063/1.3380820
[2] L.O. Costa, A.M. Silva, L.E. Borges, L.V. Mattos, F.B. Noronha, Partial oxidation of ethanol over Pd/CeO2 and Pd/ Y2O3 catalysts, Catal. Today 138 (2008) 3-4.
[3] A.M. Edwin, M.C. Maria, K.S. Nagaraja, Zinc (II) oxide-yttrium (III) oxide composite humidity sensor, Phys. Status Solidi A 191 (2002) 230-234.
DOI: 10.1002/1521-396x(200205)191:1<230::aid-pssa230>3.0.co;2-e
[4] G.K. Das, T.Y. Tan, Rare-earth-doped and codoped Y2O3 nanomaterials as potential bioimaging probes, J. Phys. Chem. C 112 (2008) 112-119.
DOI: 10.1021/jp802076n
[5] Q. Ju, Y. Liu, R. Li, L. Liu, W. Luo, X. Chen, Optical spectroscopy of Eu3+ -Doped BaFCl nanocrystals, J. Phys. Chem. C 113 (2009) 2309-2315.
DOI: 10.1021/jp809233p
[6] P.A. Tanner, K.L. Wong, Synthesis and spectroscopy of lanthanide ion-doped Y2O3, J. Phys. Chem. B 108 (2004) 136–142.
[7] S. Ray, P. Pramanik, A. Singha, A. Roy, Optical properties of nanocrystalline Y2O3: Eu3+, J. Appl. Phys. 97 (2005) 094312-094328.
DOI: 10.1063/1.1884759
[8] T.L. Phan, M.H. Phan, N. Vu, T.K. Anh, S.C. Yu, Luminescent properties of Eu-doped Y2O3 nanophosphors, Phys. Stat. Soli. (a) 201 (2004) 2170-2174.
[9] J. Lunstroot, K.P. Nockemann, K.V. Hecke, L.V. Meervelt, C. Gorller-Walrand, K. Binnemans, K.J. Driesen, Visible and near-infrared emission by samarium(III)-containing ionic liquid mixtures, Inorg. Chem. 48 (2009) 3018–3026.
DOI: 10.1021/ic8020782
[10] F. Vetrone, J.C. Boyer, J.A. Capobianco, A. Speghini, M.A. Bettinelli, Spectroscopic investigation of trivalent lanthanide doped Y2O3 nanocrystals, Nanotechnol. 15 (2004) 75-81.
[11] C.A. Kodaira, R. Stefani, A.S. Mai, M.C. Felinto, H.F. Britob, Optical investigation of Y2O3: Sm3+ nanophosphor prepared by combustion and pechini methods, J. Lumin. 127 (2007) 616–622.
[12] R. Stephen, R.G. Podowitz, S.F. Robert, Effect of europium concentration on densification of transparent Eu: Y2O3 scintillator ceramics using hot pressing, J. Am. Ceram. Soc. 93 (2010) 82–88.
[13] Y.L. Kopylov, V.B. Kravchenko, A.A. Komarov, Z.M. Lebedeva, V.V. Shemet, Nd: Y2O3 nanopowders for laser ceramics, Opt. Mater. 29 (2007) 1236-1239.
[14] W.J. Li, S.M. Zhou, H. Lin, H. Teng, N. Liu, Y.K. Li, X.R. Hou, T. T Jia, Controlling of grain size with different additives in Tm3+: Y2O3 transparent ceramics, J. Am. Ceram. Soc. 93 (2010) 3819-3822.
[15] A. Fukabori, T. Yanagida, J. Pejchal, S. Maeo, Y. Yokota, A. Yoshikawa, T. Ikegami, F. Moretti, K. Kamada, Optical and scintillation characteristics of Y2O3 transparent ceramic, J. Appl. Phy. 107 (2010) 073501-073501.
DOI: 10.1063/1.3330407
[16] C. Burda, X.B. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev. 105 (2005) 1025-1102.
DOI: 10.1021/cr030063a
[17] X.Y. Ye, W.D. Zhuang, , Y.S. Hu, T. He, X.W. Huang, C.F. Liao, S.W. Zhong, Z.F. Xu, H.P. Nie, G.F. Deng, Preparation, characterization, and optical properties of nano- and submicron-sized Y2O3: Eu3+ phosphors, J. Appl. Phy. 105 (2009).
DOI: 10.1063/1.3086624
[18] G.S. Wu, Y. Lin, X.Y. Yuan, T. Xie, B.C. Cheng, L.D. Zhang, Novel synthesis route to Y2O3: Eu nanotubes, Nanotechnol. 15 (2004) 568–571.
[19] Y.B. Mao, T. Tran, X. Guo, J.Y. Huang, C.K. Shih, K.L. Wang, J.P. Chang, Luminescence of nanocrystalline erbium-doped yttria, Adv. Funct. Mater. 19 (2009) 748-754.
[20] S. Sohn, Y. Kwon, Y. Kim, D. Kim, Synthesis and characterization of near-monodisperse yttria particles by homogeneous precipitation method, Pow. Tech. 142 (2004) 136-153.
[21] X. Bai, H.W. Song, L.X. Yu, L.M. Yang, Z.X. Liu, G.H. Pan, S.Z. Lu, X. Ren, G.Q. Lei, L.B. Fan, Luminescent properties of pure cubic phase Y2O3/Eu3+ nanotubes/nanowires prepared by a hydrothermal method, J. Phys. Chem. B 109 (2005) 15236-15242.
DOI: 10.1021/jp050652f
[22] N. Zhang, X.H. Liu, R. Yi, R.R. Shi, G.H. Gao, G.Z. Qiu, Selective and controlled synthesis of single-crystalline yttrium hydroxide/oxide nanosheets and nanotubes, J. Phys. Chem. C 112 (2008) 17788-17795.
DOI: 10.1021/jp803831g
[23] S.Y. Zeng, K.B. Tang, T.W. Li, Z.H. Liang, 3D Flower-like Y2O3: Eu3+ nanostructures: Template-free synthesis and its luminescence properties, J. Colloid Interface Sci. 3 (2007) 921-929.
[24] H.Z. Wang, M. Uehara, H. Nakamura, M. Miyazaki, H. Maeda, Synthesis of well-dispersed Y2O3: Eu nanocrystals and selfassembled nanodisks using a simple non-hydrolytic route, Adv. Mater. 17 (2005) 2506-2509.
[25] D.H. Prasad, H.R. Kim, J.S. Park, J.W. Son, B.K. Kim, H.W. Lee, J.H. Lee, Superior sinterability of nano-crystalline gadolinium doped ceria powders synthesized by co-precipitation method, J. Alloys Compd. 495 (2010) 238-241.
[26] J. Xu, Z. Chi, Mechanochromic Fluorescent Materials: Phenomena, Materials and applications, Royal Society of Chemistry, UK, (2014).
[27] B.Y. Sun, P.N. Kherani, K.D. Hirschman, L.L. Gadeken, P.M. Fauched, A Three-dimensional porous silicon P-N diode for betavoltaics and photo voltaics, Adv. Mater. 17 (2005) 1230-1233.
[28] Y. Zhu, Y. Zhou, Preparation of pure ZnO nanoparticles by a simple solid-state reaction method, Appl. Phys. A 92 (2008) 275–278.
[29] J.A. Capobianco, F. Vetron, T. D'Alesio, G. Tessari, A. Speghini, M. Bettinelli, Optical spectroscopy of nanocrystallinen cubic Y2O3: Er3+ obtained via combustion synthesis, Phys. Chem. Chem. Phys. 2 (2000) 3203–3207.
DOI: 10.1039/b003031g
[30] K.A. Koparkar, N.S. Bajaj, S.K. Omanwar, A potential candidate for lamp phosphor: Eu3+ activated K2Y2B2O7, Adv. in Opt. Tech. Article ID 706459 (2014) 1-5 doi. org/10. 1155/2014/706459.
[31] X. Wu, Y. Lianga, R. Liu, Y. Li, The photoluminescence properties of Y2O3: Eu3+ prepared by surfactant assisted co-precipitation-molten salt synthesis, Mater. Res. Bull. 45 (2010) 594–597.
[32] D. Segal, Chemical synthesis of ceramic materials, J. Mater. Chem. 7 (1997) 1297–1305.
[33] M.S. Khan, M.S. Islam, D.R. Bates, Cation doping and oxygen diVusion in zirconia: a combined atomistic simulation and molecular dynamics study, J. Mater. Chem. 8 (1998) 2299–2307.
DOI: 10.1039/a803917h
[34] L.S. Chi, R.S. Liu, B.J. Lee, Synthesis of Y2O3: Eu, Bi red phosphors by homogeneous co-precipitation and their photoluminescence behaviors, J. Electrochem. Soc. 152 (2005) J93-J98.
DOI: 10.1149/1.1940752
[35] Z. Wei, L. Sun, C. Liao, C. Yan, S. Huang, Fluorescence intensity and color purity improvement in nanosized YBO3: Eu, Appl. Phys. Lett. 80 (2002) 1447-1449.
DOI: 10.1063/1.1452787
[36] L. Wanga, Y. Wang, Enhanced photoluminescence of YBO3: Eu3+ with the incorporation of Sc3+ Bi3+ and La3+ for plasma display panel application, J. Lumin. 122 (2007) 921–923.
[37] L. Chen, A. Luo, X. Deng, S. Xue, Y. Zhang, F. Liu, J. Zhu , Z. Yao, Y. Jiang, S. Chen, Luminescence and energy transfer in the Sb3+ and Gd3+ activated YBO3 phosphor, J. Lumin. 143(2013) 670–673.
[38] V. Dubey, J. Kaur S. Agrawal, N.S. Suryanarayana, Synthesis and characterization of Eu3+ doped YBO3 phosphor, Int. J. Lumin. Appl. 3 (2013) 98-101.
[39] V. Dubey, J. Kaur, S. Agrawala, N.S. Suryanarayana, K.V.R. Murthy, Effect of Eu3+ concentration on photoluminescence and thermoluminescence behavior of YBO3: Eu3+ phosphor, Superlattices Microstruct. 67 (2014) 156–171.
[40] W. Zhang, S. Liu, Z. Hu, Y. Liang, Z. Feng, X. Sheng, Preparation of YBO3: Dy3+, Bi3+ phosphors and enhanced photoluminescence, Mater. Sci. Eng., B 187 (2014) 108–112.
[41] Y. Cao, Y. Liu, H. Feng, Y. Yang, Effects of Bi3+ co-doping on luminescence of YPO4: Dy3+ powders, Ceram. Int. 40 (2014) 15319–15323.
[42] R. Balakrishnaiah, D.W. Kim, S.S. Yi, S.H. Kim, K. Jang, H.S. Lee, B.K. Moon, J.H. Jeong, NIR to VIS frequency upconversion luminescence properties of Er3+-doped YPO4 phosphors, Thin Solid Films 518 (2010) 6145–6148.
[43] A.J.J. Bos, P. Dorenbos, A. Bessière, A. Lecointre, M. Bedu, M. Bettinelli, F. Piccinelli, Study of TL glow curves of YPO4 double doped with lanthanide ions, Radiat. Meas. 46 (2011) 1410-1416.
[44] V.B. Bhatkar, Synthesis and luminescence properties of yttrium vanadate based phosphors, Int. J. Eng. Sci. and Innovative Technol. 2 (2013) 426-432.
[45] U. Rambabua, D.P. Amalnerkar, B.B. Kale, S. Buddhudu, Fluorescence spectra of Eu3+-doped LnVO4(Ln = La and Y) powder phosphors, Mater. Res. Bull. 35 (2000) 929–936.
[46] C.M. Li, N. Lambert, Y.N. Chen, G.Y. Chen, F. Nori, Witnessing quantum coherence: from solid-state to biological systems, Sci. Rep. 2 (2012) 885-894.
DOI: 10.1038/srep00885
[47] J. Bu, P. Wang, L. Ai, X. Sang, Y. Li, A New Method for preparation and luminescence of YBO3: Eu3+ phosphor, Adv. Mater. Res. 287 (2011) 1460-1463.
[48] Z. Shao, W. Zhou, Z. Zhu, Advanced synthesis of materials forinter mediate-temperature solid oxide fuel cells, Prog. Mater Sci. 57 (2000) 804–874.
[49] J. Chen, Y. Shi, J. Shi, Synthesis of (Y, Gd)2O3: Eu nanopowder by a novel co-precipitation processing, J. Mat. Res. 19 (2004) 3586-3591.
[50] A.P. Jadhav, A. Pawar, C.W. Kim, H.G. Cha, U. Pal, Y. S. Kang, Effect of different additives on the size control and emission properties of Y2O3: Eu3+ nanoparticles prepared through the coprecipitation method, J. Phys. Chem. C 113 (2009).
DOI: 10.1021/jp9059399
[51] S.R. Yadav, R.K. Dutta, M. Kumar, A. C. Pandey, Improved color purity in nano-size Eu3+-doped YBO3 red phosphor, J. Lumin. 129 (2009) 1078–1082.
[52] Y. Hu, Y. Tao, Y. Huang, X. Yu, C. Zhang, T. Liang, J. Yu, Luminescent properties of (Y, Gd)BO3: Eu3+ under VUV excitation for PDP prepared by co-precipitation method, Optoelectron. Adv. Mater. Rapid Commun. 5 (2011) 348 – 352.
[53] H. Lai, A. Bao, Y. Yang, W. Xu, Y. Tao, H. Yang, Preparation and luminescence property of Dy3+-doped YPO4 phosphors, J. Lumin. 128 (2008) 521–524.
[54] H. Lai, A. Bao, Y. Yang, Y. Tao, H. Yang, Y. Zhang, L. Han, UV luminescence property of YPO4: RE (RE ) Ce3+, Tb3+), J. Phys. Chem. C 112 (2008) 282-286.
DOI: 10.1021/jp074103g
[55] Y. He, M. Zhao, Y. Song, G. Zhao, X. Ai, Effect of Bi3+ on fluorescence properties of YPO4: Dy3+ phosphors synthesized by a modified chemical co-precipitation method, J. Lumin. 131 (2011) 1144–1148.
[56] M. Nazarov, J.H. Kang, D.Y. Jeon, S. Bukesov, T. Akmaeva, Synthesis and luminescent performances of some europium activated yttrium oxide based systems, Opt. Mater. 27 (2005) 1587–1592.
[57] J. H. Kang, Michael Nazarov, Won Bin Im, Jin Young Kim, and Duk Young Jeon, Characterization of nano-size YVO4 : Eu and ( Y , Gd )VO4 : Eu phosphors by low voltage cathodo- and photoluminescence, J. Vac. Sci. Technol. B 23 (2005) 843-848.
DOI: 10.1116/1.1861048
[58] J. Wang, Y. Xua, M. Hojamberdiev, Y. Cui, H. Liu, G. Zhu, Optical properties of porous YVO4: Ln (Ln =Dy3+ and Tm3+) nanoplates obtained by the chemical co-precipitation method, J. Alloys Compd. 479 (2009) 772–776.
[59] B.K. Grandhe, V.R. Bandi, K. Jang, S. Ramaprabhu, S-S Yi, J-H Jeong, Enhanced red emission from YVO4: Eu3+ nano phosphors prepared by simple co-precipitation method, Electron. Mater. Lett. 7 (2011) 161-165.
[60] V. Kumar, A.F. Khan, S. Chawla, Intense red-emitting multi-rare-earth doped nanoparticles of YVO4 for spectrum conversion towards improved energy harvesting by solar cells, J. Phys. D: Appl. Phys. 46 (2013) 365101-365109.
[61] D.H. Everett, Basic Principles of Colloid Science. Royal Society of Chemistry, London, (1988).
[62] Segal, DL, Chemical Synthesis of Advanced Ceramic Materials. Cambridge University Press, Cambridge, (1989).
[63] S.M. Yeh, C.S. Su, UV induced thermoluminescence in rare earth oxide doped phosphors, Radiat. Prot. Dosim. 65 (1996)359-362.
[64] J. Kwang-Jin, B. Dong-Sik, Synthesis and characterization of Y2O3 powders by a modified solvothermal Process, Korean J. Mater. Res. 22 (2012) 78-81.
[65] G. Teowee, K.C. Mccarthy, F.S. Mccarthy, T.J. Bukowski, D.G. Davis Jr.,D.R. Uhlmann, Preparation and characterization of sol-gel derived Y2O3 thin films J. Sol-Gel Sci. Technol. 13 (1998) 895–898.
[66] T. Nishide, M. Shibata, Orientation and surface properties of sol-gel derived Y2O3 films, J. Sol-Gel Sci. Technol. 21 (2001) 189–193.
[67] Y.C. Wu, C. Garapon, R. Bazzi, A. Pillonnet, O. Tillement, J. Mugnier, Optical and fluorescent properties of Y2O3 sol–gel planar waveguides containing Tb3+ doped nanocrystals, Appl. Phys. A 87 (2007) 697–704.
[68] B.V. Hao, P.T. Huy, T.N. Khiem, N.T.T. Ngan, P.H. Duong, Synthesis of Y2O3: Eu3+ micro- and nanophosphors by sol-gel process, J. Phys.: Conf. Series 187 (2009) 1-6.
[69] Q. Yanmin, G. Hai, Upconversion properties of Y2O3: Er films prepared by sol-gel method, J. Rare Earths 27 (2009) 406-410.
[70] A. de J. Morales Ramirez, A. Garcia Murillo, F. de J. Carrillo Romo, M. Garcia Hernandez , E. de la Rosa. M. Palmerin, Y2O3: Eu3+, Tb3+ thin films prepared by sol–gel method: structural and optical studies, J Sol-Gel Sci Technol. 58 (2011).
[71] H. Zhu, L. Zhang, T. Zuo, X. Gu, Z. Wang, L. Zhu, K. Yao, Sol–gel preparation and photoluminescence property of YBO3: Eu3+/Tb3+ nanocrystalline thin films, Appl. Surf. Sci. 254 (2008) 6362–6365.
[72] J. Huang, R. Gao, Z. Lu, D. Qian, W. Li, B. Huang, X. He, Sol–gel preparation and photoluminescence enhancement of Li+ and Eu3+ co-doped YPO4 nanophosphors, Opt. Mater. 32 (2010) 857–861.
[73] F. Angiuli, E. Cavalli, P. Boutinaud, R. Mahiou, Emission properties of Sm3+/Bi3+-doped YPO4 phosphors, J. Lumin. 135 (2013) 239–242.
[74] M. Yu, J. Lin, J. Fang, Silica Spheres Coated with YVO4: Eu3+ Layers via sol-gel process: A simple method to obtain spherical core-shell phosphors, Chem. Mater. 17 (2005) 1783-1791.
DOI: 10.1021/cm0479537
[75] A. Bao , H. Lai , Y. Yang , Z. Liu , C. Tao , H. Yang, Luminescent properties of YVO4: Eu/SiO2 core–shell composite particles, J. Nanopart. Res. 12 (2010) 635–643.
[76] Y. Kuisheng, Z. Fang, W. Rina, L. Hansheng, Z. Xiyan, Upconversion luminescent properties of YVO4: Yb3+, Er3+ nano-powder by sol-gel method, J. Rare Earths 24 (2006) 162-166.
[77] Y.A. Dolinskaya, I.E. Kolesnikov, A.V. Kurochkin, A.A. Manshina, M.D. Mikhailov, A.V. Semencha, Sol-gel synthesis and luminescent properties of YVO4: Eu nanoparticles, Glass Phys. Chem 39 2013) 308–310.
[78] K.C. Patil , S. T Aruna, S. Ekambaram, Combustion synthesis, Curr. Opin. Solid State Mater. Sci. 2 (1997) 158-165.
[79] K.A. Philpot, Z.A. Munir, J.B. Holt, An investigation of synthesis of nickel aluminides through gasless combustion, J. Mater. Sci. 22 (1987) 159-169.
DOI: 10.1007/bf01160566
[80] F. Booth, The theory of self-propagating exothermic reactions in solid systems, Trans. Faraday Soc. 49 (1953) 272-281.
DOI: 10.1039/tf9534900272
[81] J.J. Moore, H.J. Feng, Combustion synthesis of advanced materials-part I, reaction parameters, Prog. Mater Sci. 39 (1995) 243-273.
[82] J.J. Moore, H.J. Feng, Combustion synthesis of advanced materials- part II. Classification, applications and modeling, Prog. Mater. Sci. 39 (1995) 275-316.
[83] A.G. Merzhanov, Theory and practice of SHS, worldwide state of the art and the results, Int. J. Self Propag. High Temp. Synth. 6 (1993) 19-639.
[84] J. Subrahmanyam, M. Vijaykumar, Self-propagating high temp synthesis, J. Mater Sci. 27 (1992) 6249-6273.
[85] K.A. Koparkar, N.S. Bajaj, S.K. Omanwar, Synthesis and characterization of MgY2B2O7: Eu(III) phosphors, Int. J. Chem Tech Res. 6 (2014) 3287-3290.
[86] C.C. Yang, F.C. Tsao, S.Y. Wu, P.J. Huang, M.K. Chung, Y.D. Yao, Enhancement of superconductivity by the small size effect in in nanoparticles, Phys. Rev. B. 72 (2005) 1-5.
[87] J.G. Huang, H.R. Zhuang, W.L. Li, Synthesis and characterization of nano crystalline BaFe12O19 powders by low temperature combustion, Mater. Res. Bull. 38 (2003) 149–159.
[88] X. Li, H. Liu, J. Wang, X. Zhang, H. Cui, Preparation and properties of YAG nano-sized powder from different precipitating agent, Opt. Mater. 25 (2004) 407–412.
[89] A.B. Salunkhe, Studies on synthesis of Co1-xMnxFe2O4 nanoparticles for hyperthermia therapy applications. Dissertation, D. Y. Patil University (2012).
[90] D.A. Fumo, J.R. Jurado, A.M. Segadaes, J.R. Frade, Mater. Res. Bull. 32, (1997) 1459-1470.
[91] J.R. Jayaramaiaha, B.N. Lakshminarasappa, B.M. Nagabhushanac, Thermoluminescence studies of solution combustion synthesized Y2O3: Nd3+ nanophosphor, Mater. Chem. Phys. 130 (2011) 175–178.
[92] L. Sun, C. Qian, C. Lian, X. Wang, C. Yan, Luminescence properties of Li+ doped nanosized Y2O3: Eu, Solid state commun. 119 (2001) 393-396.
[93] L. Xu, B. Wei, Z. Zhang, Z. Lü, H. Gao, Y. Zhang. Synthesis and luminescence of europium doped yttria nanophosphors via a sucrose-templated combustion method, Nanotech. 17 (2006) 27–31.
[94] G. Fagherazzi, S. Polizzi, M. Bettinelli, A. Speghini. Yttria based nanosized powders: a new class of fractal materials obtained by combustion synthesis, J Mater Res 15 (2000) 586–589.
[95] M. Jayasimhadri, B.V. Ratnam, K. Jang, H. Lee, B. Chen, S. Yi, J. Jeong, L.R. Moorthy, Greenish-yellow emission from Dy3+-Doped Y2O3 nanophosphors, J. Am. Ceram. Soc. 93 (2010) 494–499.
[96] H.Y. Koo, S.H. Lee, D.R. Ko, Y.C. Kang, Nano-sized Y2O3: Eu phosphor powders prepared by spray pyrolysis from spray solution with ethylenediaminetetraacetic acid, citric acid and boric acid, J. Ceram. Process. Res. 11 (2010) 656-659.
[97] Y. Zhai, Z. Yao, S, Ding, M. Q. Zhai, J. Synthesis and characterization of Y2O3: Eu nanopowder via EDTA complexing sol–gel process, J. Mater. Lett. 57 (2003) 2901–2906.
[98] N. Brahme, A. Gupta, D.P. Bisen, R.S. Kher, S.J. Dhoble, Thermoluminescence and mechanoluminescence of Eu doped Y2O3 nanophosphors, Physics Procedia 29 (2012) 97–103.
[99] N.M. Deraz, Glycine-assisted fabrication of nanocrystalline cobalt ferrite system, J. Anal. Appl. Pyrolysis 88 (2010) 103-109.
[100] K.A. Koparkar, N.S. Bajaj, S.K. Omanwar, Combustion synthesis and photoluminescence properties of Eu3+ activated Y2Zr2O7 nano phosphor, Indian J. Phys. 10. 1007/s12648-014-0554-y.
[101] S.T. Aruna, A.S. Alexander, Combustion synthesis and nanomaterials Singanahally, Curr. Opin. Solid State Mater. Sci. 12 (2008) 44–50.
[102] T. Ye, Z. Guiwen, Z. Weiping, X. Shangda, Combustion synthesis and photoluminescence of nanocrystalline Y2O3: Eu phosphors, Mater. Res. Bull. 32 (1997) 501-506.
[103] M.F. Bianchetti, R.E. Juarez, D.G. Lamas, N.E. Walsoe de Reca, Synthesis of nanocrystalline CeO2–Y2O3 powders by a nitrate–glycine gel-combustion process, J. Mater. Res. 17 (2002) 2185- 2188.
[104] Z.M. Larimi, A. Amirabadizadeh, A. Zelati, Synthesis of Y2O3 nanoparticles by modified transient morphology method, Int. Conf. on Chem. Chemi. Process 10 (2011) 86-90.
[105] R.H. Krishna, B.M. Nagabhushana, H. Nagabhushana, N. Suriya Murthy, S. C. Sharma, C. Shivakumara, R.P.S. Chakradhar, Effect of calcination temperature on structural, photoluminescence, and thermoluminescence properties of Y2O3: Eu3+ nanophosphor, J. Phys. Chem. C 117 (2013).
DOI: 10.1021/jp309684b
[106] L.G. Jacobsohn, M.W. Blair, S.C. Tornga, L.O. Brown, B.L. Bennett, R.E. Muenchausen, Y2O3: Bi nanophosphor: Solution combustion synthesis, structure, and luminescence, J. Appl. Phys. 104 (2008) 124303-124310.
DOI: 10.1063/1.3042223
[107] M.O. Onani, J.O. Okil, F.B. Dejene, Solution–combustion synthesis and photoluminescence properties of YBO3: Tb3+ phosphor powders, Physica B 439 (2014) 133–136.
[108] A.B. Gawande, R.P. Sonekar, S.K. Omanwar, Combustion synthesis and energy transfer mechanism of Bi3+→Gd3+ and Pr3+→Gd3+ in YBO3, Combust. Sci. Technol. 186 (2014) 785-791.
[109] Z. Xiu, Z. Yang, M. Lu, S. Liu, H. Zhang, G. Zhou, Synthesis, structural and luminescence properties of Dy3+-doped YPO4 nanocrystals, Opt. Mater. 29 (2006) 431–434.
[110] S. Liu, Z. Xiu, F. Xu, W. Yu, J. Yu, G. Feng, Combustion synthesis and photoluminescence of Nd3+-doped YPO4 nanocrystals, J. Alloys Compd. 459 (2008) 407–409.
[111] F.M. Nirwan, T.K. Gundurao, P.K. Gupta, R.B. Pode, Studies of defects in YVO4: Pb2+, Eu3+ red phosphor material, Phys. Status Solidi (a) 198 (2003) 447– 456.
[112] V. Nguyen, T.K.C. Tran, D.V. Nguyen, Combustion synthesis and characterization of Er3+-doped and Er3+, Yb3+-codoped YVO4 nanophosphors oriented for luminescent biolabeling applications, Adv. Nat. Sci.: Nanosci. Nanotechnol. 2 (2011) 1-5.
[113] S. Yi, J.S. Bae, B.K. Moon, J.H. Jeong, J. Park, I.W. Kim, Enhanced luminescence of pulsed-laser-deposited Y2O3: Eu3+ thin-film phosphors by Li doping, Appl. Phys. Lett. 81 (2002) 3344-3346.
DOI: 10.1063/1.1517404
[114] Z. Zhang, Y. Zhang, X. Li, J. Xu, Y. Huang, Infrared spectra and luminescence properties of (Yx, Gd0. 95–x)BO3: Eu0. 053+, J. Alloys Compd. 455 (2008) 280–284.
[115] W.J. Park, M.K. Jung, S.J. Im, D.H. Yoon, Photoluminescence characteristics of energy transfer between Bi3+ and Eu3+ in LnVO4: Eu, Bi (Ln =Y, La, Gd), Colloids Surf., A 313 (2008) 373–377.