Exploring Synthesis Techniques for Yttrium Based Phosphors

Article Preview

Abstract:

In recent years, the term ‘smart materials’ which means the potential of a material having novel functional abilities, has become a buzz word. Luminescent materials held a lion’s share amongst all functional materials. The research in these materials is nowadays becoming the frontline platform and has challenging options for the betterment of society. These materials have applications in diverse fields such as, radiation detection, monitoring and assessment, display devices (PDP, CRT, CTV, LCD, FPD, etc.), and Lighting devices (CFL, Hg Free lamps using VUV Xenon, Solid State lighting (SSL-LED blue chips, UV-LEDs, O-LEDs, etc.). The main and essential role is being played by the phosphors. The activity of the phosphor is also depending on the particle size and hence the nanophase phosphor developments are very important aspect of development of functional materials. It is also very much clear now that the method of synthesis controls/decides a particle size of the final product. A particular method is better for a specific phosphor for getting the desired particle size of the final product. Scaling is also very much essential for instituting the specific method of synthesis for desired phosphor. These aspects are important for commercial production.Looking at the applications specified in first paragraph, one thing is common which is red correction required for display devices or lighting devices. The red correction in full-colour display/white light emission is essentially done by using Y2O3:Eu3+ phosphor or Eu3+ doped yttrium based hosts. Red emission is of Eu3+ (5D07Fj, where j could be predominantly 2, 1, 3) when symmetrically organized environment. In this context, the review of yttrium based phosphors is being presented. This also covers our experience in synthesis of yttrium based luminescent materials with different methods of synthesis and their comparative aspects with regard to luminescence properties.Contents of Paper

You might also be interested in these eBooks

Info:

Periodical:

Pages:

95-119

Citation:

Online since:

January 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] X.R. Hou, S.M. Zhou, H. Lin, H. Teng, Y.K. Li, W.J. Li, T.T. Jia, Violet and blue upconversion luminescence in Tm3+ /Yb3+ co-doped Y2O3 transparent ceramic, J. Appl. Phys. 107 (2010) 83-101.

DOI: 10.1063/1.3380820

Google Scholar

[2] L.O. Costa, A.M. Silva, L.E. Borges, L.V. Mattos, F.B. Noronha, Partial oxidation of ethanol over Pd/CeO2 and Pd/ Y2O3 catalysts, Catal. Today 138 (2008) 3-4.

DOI: 10.1016/j.cattod.2008.05.003

Google Scholar

[3] A.M. Edwin, M.C. Maria, K.S. Nagaraja, Zinc (II) oxide-yttrium (III) oxide composite humidity sensor, Phys. Status Solidi A 191 (2002) 230-234.

DOI: 10.1002/1521-396x(200205)191:1<230::aid-pssa230>3.0.co;2-e

Google Scholar

[4] G.K. Das, T.Y. Tan, Rare-earth-doped and codoped Y2O3 nanomaterials as potential bioimaging probes, J. Phys. Chem. C 112 (2008) 112-119.

DOI: 10.1021/jp802076n

Google Scholar

[5] Q. Ju, Y. Liu, R. Li, L. Liu, W. Luo, X. Chen, Optical spectroscopy of Eu3+ -Doped BaFCl nanocrystals, J. Phys. Chem. C 113 (2009) 2309-2315.

DOI: 10.1021/jp809233p

Google Scholar

[6] P.A. Tanner, K.L. Wong, Synthesis and spectroscopy of lanthanide ion-doped Y2O3, J. Phys. Chem. B 108 (2004) 136–142.

Google Scholar

[7] S. Ray, P. Pramanik, A. Singha, A. Roy, Optical properties of nanocrystalline Y2O3: Eu3+, J. Appl. Phys. 97 (2005) 094312-094328.

DOI: 10.1063/1.1884759

Google Scholar

[8] T.L. Phan, M.H. Phan, N. Vu, T.K. Anh, S.C. Yu, Luminescent properties of Eu-doped Y2O3 nanophosphors, Phys. Stat. Soli. (a) 201 (2004) 2170-2174.

DOI: 10.1002/pssa.200406825

Google Scholar

[9] J. Lunstroot, K.P. Nockemann, K.V. Hecke, L.V. Meervelt, C. Gorller-Walrand, K. Binnemans, K.J. Driesen, Visible and near-infrared emission by samarium(III)-containing ionic liquid mixtures, Inorg. Chem. 48 (2009) 3018–3026.

DOI: 10.1021/ic8020782

Google Scholar

[10] F. Vetrone, J.C. Boyer, J.A. Capobianco, A. Speghini, M.A. Bettinelli, Spectroscopic investigation of trivalent lanthanide doped Y2O3 nanocrystals, Nanotechnol. 15 (2004) 75-81.

DOI: 10.1088/0957-4484/15/1/015

Google Scholar

[11] C.A. Kodaira, R. Stefani, A.S. Mai, M.C. Felinto, H.F. Britob, Optical investigation of Y2O3: Sm3+ nanophosphor prepared by combustion and pechini methods, J. Lumin. 127 (2007) 616–622.

DOI: 10.1016/j.jlumin.2007.03.016

Google Scholar

[12] R. Stephen, R.G. Podowitz, S.F. Robert, Effect of europium concentration on densification of transparent Eu: Y2O3 scintillator ceramics using hot pressing, J. Am. Ceram. Soc. 93 (2010) 82–88.

DOI: 10.1111/j.1551-2916.2009.03350.x

Google Scholar

[13] Y.L. Kopylov, V.B. Kravchenko, A.A. Komarov, Z.M. Lebedeva, V.V. Shemet, Nd: Y2O3 nanopowders for laser ceramics, Opt. Mater. 29 (2007) 1236-1239.

DOI: 10.1016/j.optmat.2006.06.018

Google Scholar

[14] W.J. Li, S.M. Zhou, H. Lin, H. Teng, N. Liu, Y.K. Li, X.R. Hou, T. T Jia, Controlling of grain size with different additives in Tm3+: Y2O3 transparent ceramics, J. Am. Ceram. Soc. 93 (2010) 3819-3822.

DOI: 10.1111/j.1551-2916.2010.03941.x

Google Scholar

[15] A. Fukabori, T. Yanagida, J. Pejchal, S. Maeo, Y. Yokota, A. Yoshikawa, T. Ikegami, F. Moretti, K. Kamada, Optical and scintillation characteristics of Y2O3 transparent ceramic, J. Appl. Phy. 107 (2010) 073501-073501.

DOI: 10.1063/1.3330407

Google Scholar

[16] C. Burda, X.B. Chen, R. Narayanan, M.A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev. 105 (2005) 1025-1102.

DOI: 10.1021/cr030063a

Google Scholar

[17] X.Y. Ye, W.D. Zhuang, , Y.S. Hu, T. He, X.W. Huang, C.F. Liao, S.W. Zhong, Z.F. Xu, H.P. Nie, G.F. Deng, Preparation, characterization, and optical properties of nano- and submicron-sized Y2O3: Eu3+ phosphors, J. Appl. Phy. 105 (2009).

DOI: 10.1063/1.3086624

Google Scholar

[18] G.S. Wu, Y. Lin, X.Y. Yuan, T. Xie, B.C. Cheng, L.D. Zhang, Novel synthesis route to Y2O3: Eu nanotubes, Nanotechnol. 15 (2004) 568–571.

Google Scholar

[19] Y.B. Mao, T. Tran, X. Guo, J.Y. Huang, C.K. Shih, K.L. Wang, J.P. Chang, Luminescence of nanocrystalline erbium-doped yttria, Adv. Funct. Mater. 19 (2009) 748-754.

DOI: 10.1002/adfm.200800880

Google Scholar

[20] S. Sohn, Y. Kwon, Y. Kim, D. Kim, Synthesis and characterization of near-monodisperse yttria particles by homogeneous precipitation method, Pow. Tech. 142 (2004) 136-153.

DOI: 10.1016/j.powtec.2004.03.013

Google Scholar

[21] X. Bai, H.W. Song, L.X. Yu, L.M. Yang, Z.X. Liu, G.H. Pan, S.Z. Lu, X. Ren, G.Q. Lei, L.B. Fan, Luminescent properties of pure cubic phase Y2O3/Eu3+ nanotubes/nanowires prepared by a hydrothermal method, J. Phys. Chem. B 109 (2005) 15236-15242.

DOI: 10.1021/jp050652f

Google Scholar

[22] N. Zhang, X.H. Liu, R. Yi, R.R. Shi, G.H. Gao, G.Z. Qiu, Selective and controlled synthesis of single-crystalline yttrium hydroxide/oxide nanosheets and nanotubes, J. Phys. Chem. C 112 (2008) 17788-17795.

DOI: 10.1021/jp803831g

Google Scholar

[23] S.Y. Zeng, K.B. Tang, T.W. Li, Z.H. Liang, 3D Flower-like Y2O3: Eu3+ nanostructures: Template-free synthesis and its luminescence properties, J. Colloid Interface Sci. 3 (2007) 921-929.

DOI: 10.1016/j.jcis.2007.08.034

Google Scholar

[24] H.Z. Wang, M. Uehara, H. Nakamura, M. Miyazaki, H. Maeda, Synthesis of well-dispersed Y2O3: Eu nanocrystals and selfassembled nanodisks using a simple non-hydrolytic route, Adv. Mater. 17 (2005) 2506-2509.

DOI: 10.1002/adma.200500503

Google Scholar

[25] D.H. Prasad, H.R. Kim, J.S. Park, J.W. Son, B.K. Kim, H.W. Lee, J.H. Lee, Superior sinterability of nano-crystalline gadolinium doped ceria powders synthesized by co-precipitation method, J. Alloys Compd. 495 (2010) 238-241.

DOI: 10.1016/j.jallcom.2010.01.137

Google Scholar

[26] J. Xu, Z. Chi, Mechanochromic Fluorescent Materials: Phenomena, Materials and applications, Royal Society of Chemistry, UK, (2014).

Google Scholar

[27] B.Y. Sun, P.N. Kherani, K.D. Hirschman, L.L. Gadeken, P.M. Fauched, A Three-dimensional porous silicon P-N diode for betavoltaics and photo voltaics, Adv. Mater. 17 (2005) 1230-1233.

DOI: 10.1002/adma.200401723

Google Scholar

[28] Y. Zhu, Y. Zhou, Preparation of pure ZnO nanoparticles by a simple solid-state reaction method, Appl. Phys. A 92 (2008) 275–278.

DOI: 10.1007/s00339-008-4533-z

Google Scholar

[29] J.A. Capobianco, F. Vetron, T. D'Alesio, G. Tessari, A. Speghini, M. Bettinelli, Optical spectroscopy of nanocrystallinen cubic Y2O3: Er3+ obtained via combustion synthesis, Phys. Chem. Chem. Phys. 2 (2000) 3203–3207.

DOI: 10.1039/b003031g

Google Scholar

[30] K.A. Koparkar, N.S. Bajaj, S.K. Omanwar, A potential candidate for lamp phosphor: Eu3+ activated K2Y2B2O7, Adv. in Opt. Tech. Article ID 706459 (2014) 1-5 doi. org/10. 1155/2014/706459.

Google Scholar

[31] X. Wu, Y. Lianga, R. Liu, Y. Li, The photoluminescence properties of Y2O3: Eu3+ prepared by surfactant assisted co-precipitation-molten salt synthesis, Mater. Res. Bull. 45 (2010) 594–597.

DOI: 10.1016/j.materresbull.2010.01.012

Google Scholar

[32] D. Segal, Chemical synthesis of ceramic materials, J. Mater. Chem. 7 (1997) 1297–1305.

Google Scholar

[33] M.S. Khan, M.S. Islam, D.R. Bates, Cation doping and oxygen diVusion in zirconia: a combined atomistic simulation and molecular dynamics study, J. Mater. Chem. 8 (1998) 2299–2307.

DOI: 10.1039/a803917h

Google Scholar

[34] L.S. Chi, R.S. Liu, B.J. Lee, Synthesis of Y2O3: Eu, Bi red phosphors by homogeneous co-precipitation and their photoluminescence behaviors, J. Electrochem. Soc. 152 (2005) J93-J98.

DOI: 10.1149/1.1940752

Google Scholar

[35] Z. Wei, L. Sun, C. Liao, C. Yan, S. Huang, Fluorescence intensity and color purity improvement in nanosized YBO3: Eu, Appl. Phys. Lett. 80 (2002) 1447-1449.

DOI: 10.1063/1.1452787

Google Scholar

[36] L. Wanga, Y. Wang, Enhanced photoluminescence of YBO3: Eu3+ with the incorporation of Sc3+ Bi3+ and La3+ for plasma display panel application, J. Lumin. 122 (2007) 921–923.

DOI: 10.1016/j.jlumin.2006.01.327

Google Scholar

[37] L. Chen, A. Luo, X. Deng, S. Xue, Y. Zhang, F. Liu, J. Zhu , Z. Yao, Y. Jiang, S. Chen, Luminescence and energy transfer in the Sb3+ and Gd3+ activated YBO3 phosphor, J. Lumin. 143(2013) 670–673.

DOI: 10.1016/j.jlumin.2013.06.014

Google Scholar

[38] V. Dubey, J. Kaur S. Agrawal, N.S. Suryanarayana, Synthesis and characterization of Eu3+ doped YBO3 phosphor, Int. J. Lumin. Appl. 3 (2013) 98-101.

Google Scholar

[39] V. Dubey, J. Kaur, S. Agrawala, N.S. Suryanarayana, K.V.R. Murthy, Effect of Eu3+ concentration on photoluminescence and thermoluminescence behavior of YBO3: Eu3+ phosphor, Superlattices Microstruct. 67 (2014) 156–171.

DOI: 10.1016/j.spmi.2013.12.026

Google Scholar

[40] W. Zhang, S. Liu, Z. Hu, Y. Liang, Z. Feng, X. Sheng, Preparation of YBO3: Dy3+, Bi3+ phosphors and enhanced photoluminescence, Mater. Sci. Eng., B 187 (2014) 108–112.

DOI: 10.1016/j.mseb.2014.05.006

Google Scholar

[41] Y. Cao, Y. Liu, H. Feng, Y. Yang, Effects of Bi3+ co-doping on luminescence of YPO4: Dy3+ powders, Ceram. Int. 40 (2014) 15319–15323.

DOI: 10.1016/j.ceramint.2014.06.127

Google Scholar

[42] R. Balakrishnaiah, D.W. Kim, S.S. Yi, S.H. Kim, K. Jang, H.S. Lee, B.K. Moon, J.H. Jeong, NIR to VIS frequency upconversion luminescence properties of Er3+-doped YPO4 phosphors, Thin Solid Films 518 (2010) 6145–6148.

DOI: 10.1016/j.tsf.2010.04.062

Google Scholar

[43] A.J.J. Bos, P. Dorenbos, A. Bessière, A. Lecointre, M. Bedu, M. Bettinelli, F. Piccinelli, Study of TL glow curves of YPO4 double doped with lanthanide ions, Radiat. Meas. 46 (2011) 1410-1416.

DOI: 10.1016/j.radmeas.2011.04.021

Google Scholar

[44] V.B. Bhatkar, Synthesis and luminescence properties of yttrium vanadate based phosphors, Int. J. Eng. Sci. and Innovative Technol. 2 (2013) 426-432.

Google Scholar

[45] U. Rambabua, D.P. Amalnerkar, B.B. Kale, S. Buddhudu, Fluorescence spectra of Eu3+-doped LnVO4(Ln = La and Y) powder phosphors, Mater. Res. Bull. 35 (2000) 929–936.

DOI: 10.1016/s0025-5408(00)00287-7

Google Scholar

[46] C.M. Li, N. Lambert, Y.N. Chen, G.Y. Chen, F. Nori, Witnessing quantum coherence: from solid-state to biological systems, Sci. Rep. 2 (2012) 885-894.

DOI: 10.1038/srep00885

Google Scholar

[47] J. Bu, P. Wang, L. Ai, X. Sang, Y. Li, A New Method for preparation and luminescence of YBO3: Eu3+ phosphor, Adv. Mater. Res. 287 (2011) 1460-1463.

Google Scholar

[48] Z. Shao, W. Zhou, Z. Zhu, Advanced synthesis of materials forinter mediate-temperature solid oxide fuel cells, Prog. Mater Sci. 57 (2000) 804–874.

Google Scholar

[49] J. Chen, Y. Shi, J. Shi, Synthesis of (Y, Gd)2O3: Eu nanopowder by a novel co-precipitation processing, J. Mat. Res. 19 (2004) 3586-3591.

DOI: 10.1557/jmr.2004.0477

Google Scholar

[50] A.P. Jadhav, A. Pawar, C.W. Kim, H.G. Cha, U. Pal, Y. S. Kang, Effect of different additives on the size control and emission properties of Y2O3: Eu3+ nanoparticles prepared through the coprecipitation method, J. Phys. Chem. C 113 (2009).

DOI: 10.1021/jp9059399

Google Scholar

[51] S.R. Yadav, R.K. Dutta, M. Kumar, A. C. Pandey, Improved color purity in nano-size Eu3+-doped YBO3 red phosphor, J. Lumin. 129 (2009) 1078–1082.

DOI: 10.1016/j.jlumin.2009.04.032

Google Scholar

[52] Y. Hu, Y. Tao, Y. Huang, X. Yu, C. Zhang, T. Liang, J. Yu, Luminescent properties of (Y, Gd)BO3: Eu3+ under VUV excitation for PDP prepared by co-precipitation method, Optoelectron. Adv. Mater. Rapid Commun. 5 (2011) 348 – 352.

Google Scholar

[53] H. Lai, A. Bao, Y. Yang, W. Xu, Y. Tao, H. Yang, Preparation and luminescence property of Dy3+-doped YPO4 phosphors, J. Lumin. 128 (2008) 521–524.

DOI: 10.1016/j.jlumin.2007.09.027

Google Scholar

[54] H. Lai, A. Bao, Y. Yang, Y. Tao, H. Yang, Y. Zhang, L. Han, UV luminescence property of YPO4: RE (RE ) Ce3+, Tb3+), J. Phys. Chem. C 112 (2008) 282-286.

DOI: 10.1021/jp074103g

Google Scholar

[55] Y. He, M. Zhao, Y. Song, G. Zhao, X. Ai, Effect of Bi3+ on fluorescence properties of YPO4: Dy3+ phosphors synthesized by a modified chemical co-precipitation method, J. Lumin. 131 (2011) 1144–1148.

DOI: 10.1016/j.jlumin.2011.02.030

Google Scholar

[56] M. Nazarov, J.H. Kang, D.Y. Jeon, S. Bukesov, T. Akmaeva, Synthesis and luminescent performances of some europium activated yttrium oxide based systems, Opt. Mater. 27 (2005) 1587–1592.

DOI: 10.1016/j.optmat.2004.10.013

Google Scholar

[57] J. H. Kang, Michael Nazarov, Won Bin Im, Jin Young Kim, and Duk Young Jeon, Characterization of nano-size YVO4 : Eu and ( Y , Gd )VO4 : Eu phosphors by low voltage cathodo- and photoluminescence, J. Vac. Sci. Technol. B 23 (2005) 843-848.

DOI: 10.1116/1.1861048

Google Scholar

[58] J. Wang, Y. Xua, M. Hojamberdiev, Y. Cui, H. Liu, G. Zhu, Optical properties of porous YVO4: Ln (Ln =Dy3+ and Tm3+) nanoplates obtained by the chemical co-precipitation method, J. Alloys Compd. 479 (2009) 772–776.

DOI: 10.1016/j.jallcom.2009.01.076

Google Scholar

[59] B.K. Grandhe, V.R. Bandi, K. Jang, S. Ramaprabhu, S-S Yi, J-H Jeong, Enhanced red emission from YVO4: Eu3+ nano phosphors prepared by simple co-precipitation method, Electron. Mater. Lett. 7 (2011) 161-165.

DOI: 10.1007/s13391-011-0613-x

Google Scholar

[60] V. Kumar, A.F. Khan, S. Chawla, Intense red-emitting multi-rare-earth doped nanoparticles of YVO4 for spectrum conversion towards improved energy harvesting by solar cells, J. Phys. D: Appl. Phys. 46 (2013) 365101-365109.

DOI: 10.1088/0022-3727/46/36/365101

Google Scholar

[61] D.H. Everett, Basic Principles of Colloid Science. Royal Society of Chemistry, London, (1988).

Google Scholar

[62] Segal, DL, Chemical Synthesis of Advanced Ceramic Materials. Cambridge University Press, Cambridge, (1989).

Google Scholar

[63] S.M. Yeh, C.S. Su, UV induced thermoluminescence in rare earth oxide doped phosphors, Radiat. Prot. Dosim. 65 (1996)359-362.

DOI: 10.1093/oxfordjournals.rpd.a031661

Google Scholar

[64] J. Kwang-Jin, B. Dong-Sik, Synthesis and characterization of Y2O3 powders by a modified solvothermal Process, Korean J. Mater. Res. 22 (2012) 78-81.

DOI: 10.3740/mrsk.2012.22.2.078

Google Scholar

[65] G. Teowee, K.C. Mccarthy, F.S. Mccarthy, T.J. Bukowski, D.G. Davis Jr.,D.R. Uhlmann, Preparation and characterization of sol-gel derived Y2O3 thin films J. Sol-Gel Sci. Technol. 13 (1998) 895–898.

DOI: 10.1023/a:1008671206691

Google Scholar

[66] T. Nishide, M. Shibata, Orientation and surface properties of sol-gel derived Y2O3 films, J. Sol-Gel Sci. Technol. 21 (2001) 189–193.

DOI: 10.1023/a:1011226418734

Google Scholar

[67] Y.C. Wu, C. Garapon, R. Bazzi, A. Pillonnet, O. Tillement, J. Mugnier, Optical and fluorescent properties of Y2O3 sol–gel planar waveguides containing Tb3+ doped nanocrystals, Appl. Phys. A 87 (2007) 697–704.

DOI: 10.1007/s00339-007-3894-z

Google Scholar

[68] B.V. Hao, P.T. Huy, T.N. Khiem, N.T.T. Ngan, P.H. Duong, Synthesis of Y2O3: Eu3+ micro- and nanophosphors by sol-gel process, J. Phys.: Conf. Series 187 (2009) 1-6.

DOI: 10.1088/1742-6596/187/1/012074

Google Scholar

[69] Q. Yanmin, G. Hai, Upconversion properties of Y2O3: Er films prepared by sol-gel method, J. Rare Earths 27 (2009) 406-410.

DOI: 10.1016/s1002-0721(08)60261-6

Google Scholar

[70] A. de J. Morales Ramirez, A. Garcia Murillo, F. de J. Carrillo Romo, M. Garcia Hernandez , E. de la Rosa. M. Palmerin, Y2O3: Eu3+, Tb3+ thin films prepared by sol–gel method: structural and optical studies, J Sol-Gel Sci Technol. 58 (2011).

DOI: 10.1007/s10971-011-2402-2

Google Scholar

[71] H. Zhu, L. Zhang, T. Zuo, X. Gu, Z. Wang, L. Zhu, K. Yao, Sol–gel preparation and photoluminescence property of YBO3: Eu3+/Tb3+ nanocrystalline thin films, Appl. Surf. Sci. 254 (2008) 6362–6365.

DOI: 10.1016/j.apsusc.2008.03.183

Google Scholar

[72] J. Huang, R. Gao, Z. Lu, D. Qian, W. Li, B. Huang, X. He, Sol–gel preparation and photoluminescence enhancement of Li+ and Eu3+ co-doped YPO4 nanophosphors, Opt. Mater. 32 (2010) 857–861.

DOI: 10.1016/j.optmat.2009.12.011

Google Scholar

[73] F. Angiuli, E. Cavalli, P. Boutinaud, R. Mahiou, Emission properties of Sm3+/Bi3+-doped YPO4 phosphors, J. Lumin. 135 (2013) 239–242.

DOI: 10.1016/j.jlumin.2012.10.005

Google Scholar

[74] M. Yu, J. Lin, J. Fang, Silica Spheres Coated with YVO4: Eu3+ Layers via sol-gel process: A simple method to obtain spherical core-shell phosphors, Chem. Mater. 17 (2005) 1783-1791.

DOI: 10.1021/cm0479537

Google Scholar

[75] A. Bao , H. Lai , Y. Yang , Z. Liu , C. Tao , H. Yang, Luminescent properties of YVO4: Eu/SiO2 core–shell composite particles, J. Nanopart. Res. 12 (2010) 635–643.

DOI: 10.1007/s11051-009-9633-y

Google Scholar

[76] Y. Kuisheng, Z. Fang, W. Rina, L. Hansheng, Z. Xiyan, Upconversion luminescent properties of YVO4: Yb3+, Er3+ nano-powder by sol-gel method, J. Rare Earths 24 (2006) 162-166.

DOI: 10.1016/s1002-0721(07)60350-0

Google Scholar

[77] Y.A. Dolinskaya, I.E. Kolesnikov, A.V. Kurochkin, A.A. Manshina, M.D. Mikhailov, A.V. Semencha, Sol-gel synthesis and luminescent properties of YVO4: Eu nanoparticles, Glass Phys. Chem 39 2013) 308–310.

DOI: 10.1134/s1087659613030061

Google Scholar

[78] K.C. Patil , S. T Aruna, S. Ekambaram, Combustion synthesis, Curr. Opin. Solid State Mater. Sci. 2 (1997) 158-165.

Google Scholar

[79] K.A. Philpot, Z.A. Munir, J.B. Holt, An investigation of synthesis of nickel aluminides through gasless combustion, J. Mater. Sci. 22 (1987) 159-169.

DOI: 10.1007/bf01160566

Google Scholar

[80] F. Booth, The theory of self-propagating exothermic reactions in solid systems, Trans. Faraday Soc. 49 (1953) 272-281.

DOI: 10.1039/tf9534900272

Google Scholar

[81] J.J. Moore, H.J. Feng, Combustion synthesis of advanced materials-part I, reaction parameters, Prog. Mater Sci. 39 (1995) 243-273.

Google Scholar

[82] J.J. Moore, H.J. Feng, Combustion synthesis of advanced materials- part II. Classification, applications and modeling, Prog. Mater. Sci. 39 (1995) 275-316.

Google Scholar

[83] A.G. Merzhanov, Theory and practice of SHS, worldwide state of the art and the results, Int. J. Self Propag. High Temp. Synth. 6 (1993) 19-639.

Google Scholar

[84] J. Subrahmanyam, M. Vijaykumar, Self-propagating high temp synthesis, J. Mater Sci. 27 (1992) 6249-6273.

Google Scholar

[85] K.A. Koparkar, N.S. Bajaj, S.K. Omanwar, Synthesis and characterization of MgY2B2O7: Eu(III) phosphors, Int. J. Chem Tech Res. 6 (2014) 3287-3290.

Google Scholar

[86] C.C. Yang, F.C. Tsao, S.Y. Wu, P.J. Huang, M.K. Chung, Y.D. Yao, Enhancement of superconductivity by the small size effect in in nanoparticles, Phys. Rev. B. 72 (2005) 1-5.

Google Scholar

[87] J.G. Huang, H.R. Zhuang, W.L. Li, Synthesis and characterization of nano crystalline BaFe12O19 powders by low temperature combustion, Mater. Res. Bull. 38 (2003) 149–159.

DOI: 10.1016/s0025-5408(02)00979-0

Google Scholar

[88] X. Li, H. Liu, J. Wang, X. Zhang, H. Cui, Preparation and properties of YAG nano-sized powder from different precipitating agent, Opt. Mater. 25 (2004) 407–412.

DOI: 10.1016/j.optmat.2003.10.001

Google Scholar

[89] A.B. Salunkhe, Studies on synthesis of Co1-xMnxFe2O4 nanoparticles for hyperthermia therapy applications. Dissertation, D. Y. Patil University (‎2012).

Google Scholar

[90] D.A. Fumo, J.R. Jurado, A.M. Segadaes, J.R. Frade, Mater. Res. Bull. 32, (1997) 1459-1470.

Google Scholar

[91] J.R. Jayaramaiaha, B.N. Lakshminarasappa, B.M. Nagabhushanac, Thermoluminescence studies of solution combustion synthesized Y2O3: Nd3+ nanophosphor, Mater. Chem. Phys. 130 (2011) 175–178.

DOI: 10.1016/j.matchemphys.2011.06.025

Google Scholar

[92] L. Sun, C. Qian, C. Lian, X. Wang, C. Yan, Luminescence properties of Li+ doped nanosized Y2O3: Eu, Solid state commun. 119 (2001) 393-396.

DOI: 10.1016/s0038-1098(01)00247-2

Google Scholar

[93] L. Xu, B. Wei, Z. Zhang, Z. Lü, H. Gao, Y. Zhang. Synthesis and luminescence of europium doped yttria nanophosphors via a sucrose-templated combustion method, Nanotech. 17 (2006) 27–31.

DOI: 10.1088/0957-4484/17/17/008

Google Scholar

[94] G. Fagherazzi, S. Polizzi, M. Bettinelli, A. Speghini. Yttria based nanosized powders: a new class of fractal materials obtained by combustion synthesis, J Mater Res 15 (2000) 586–589.

DOI: 10.1557/jmr.2000.0087

Google Scholar

[95] M. Jayasimhadri, B.V. Ratnam, K. Jang, H. Lee, B. Chen, S. Yi, J. Jeong, L.R. Moorthy, Greenish-yellow emission from Dy3+-Doped Y2O3 nanophosphors, J. Am. Ceram. Soc. 93 (2010) 494–499.

DOI: 10.1111/j.1551-2916.2009.03426.x

Google Scholar

[96] H.Y. Koo, S.H. Lee, D.R. Ko, Y.C. Kang, Nano-sized Y2O3: Eu phosphor powders prepared by spray pyrolysis from spray solution with ethylenediaminetetraacetic acid, citric acid and boric acid, J. Ceram. Process. Res. 11 (2010) 656-659.

DOI: 10.1016/j.ceramint.2009.09.041

Google Scholar

[97] Y. Zhai, Z. Yao, S, Ding, M. Q. Zhai, J. Synthesis and characterization of Y2O3: Eu nanopowder via EDTA complexing sol–gel process, J. Mater. Lett. 57 (2003) 2901–2906.

DOI: 10.1016/s0167-577x(02)01394-0

Google Scholar

[98] N. Brahme, A. Gupta, D.P. Bisen, R.S. Kher, S.J. Dhoble, Thermoluminescence and mechanoluminescence of Eu doped Y2O3 nanophosphors, Physics Procedia 29 (2012) 97–103.

DOI: 10.1016/j.phpro.2012.03.698

Google Scholar

[99] N.M. Deraz, Glycine-assisted fabrication of nanocrystalline cobalt ferrite system, J. Anal. Appl. Pyrolysis 88 (2010) 103-109.

DOI: 10.1016/j.jaap.2010.03.002

Google Scholar

[100] K.A. Koparkar, N.S. Bajaj, S.K. Omanwar, Combustion synthesis and photoluminescence properties of Eu3+ activated Y2Zr2O7 nano phosphor, Indian J. Phys. 10. 1007/s12648-014-0554-y.

DOI: 10.1007/s12648-014-0554-y

Google Scholar

[101] S.T. Aruna, A.S. Alexander, Combustion synthesis and nanomaterials Singanahally, Curr. Opin. Solid State Mater. Sci. 12 (2008) 44–50.

Google Scholar

[102] T. Ye, Z. Guiwen, Z. Weiping, X. Shangda, Combustion synthesis and photoluminescence of nanocrystalline Y2O3: Eu phosphors, Mater. Res. Bull. 32 (1997) 501-506.

DOI: 10.1016/s0025-5408(97)00007-x

Google Scholar

[103] M.F. Bianchetti, R.E. Juarez, D.G. Lamas, N.E. Walsoe de Reca, Synthesis of nanocrystalline CeO2–Y2O3 powders by a nitrate–glycine gel-combustion process, J. Mater. Res. 17 (2002) 2185- 2188.

DOI: 10.1557/jmr.2002.0320

Google Scholar

[104] Z.M. Larimi, A. Amirabadizadeh, A. Zelati, Synthesis of Y2O3 nanoparticles by modified transient morphology method, Int. Conf. on Chem. Chemi. Process 10 (2011) 86-90.

Google Scholar

[105] R.H. Krishna, B.M. Nagabhushana, H. Nagabhushana, N. Suriya Murthy, S. C. Sharma, C. Shivakumara, R.P.S. Chakradhar, Effect of calcination temperature on structural, photoluminescence, and thermoluminescence properties of Y2O3: Eu3+ nanophosphor, J. Phys. Chem. C 117 (2013).

DOI: 10.1021/jp309684b

Google Scholar

[106] L.G. Jacobsohn,  M.W. Blair, S.C. Tornga, L.O. Brown, B.L. Bennett, R.E. Muenchausen, Y2O3: Bi nanophosphor: Solution combustion synthesis, structure, and luminescence, J. Appl. Phys. 104 (2008) 124303-124310.

DOI: 10.1063/1.3042223

Google Scholar

[107] M.O. Onani, J.O. Okil, F.B. Dejene, Solution–combustion synthesis and photoluminescence properties of YBO3: Tb3+ phosphor powders, Physica B 439 (2014) 133–136.

DOI: 10.1016/j.physb.2013.10.056

Google Scholar

[108] A.B. Gawande, R.P. Sonekar, S.K. Omanwar, Combustion synthesis and energy transfer mechanism of Bi3+→Gd3+ and Pr3+→Gd3+ in YBO3, Combust. Sci. Technol. 186 (2014) 785-791.

Google Scholar

[109] Z. Xiu, Z. Yang, M. Lu, S. Liu, H. Zhang, G. Zhou, Synthesis, structural and luminescence properties of Dy3+-doped YPO4 nanocrystals, Opt. Mater. 29 (2006) 431–434.

DOI: 10.1016/j.optmat.2005.08.038

Google Scholar

[110] S. Liu, Z. Xiu, F. Xu, W. Yu, J. Yu, G. Feng, Combustion synthesis and photoluminescence of Nd3+-doped YPO4 nanocrystals, J. Alloys Compd. 459 (2008) 407–409.

DOI: 10.1016/j.jallcom.2007.04.276

Google Scholar

[111] F.M. Nirwan, T.K. Gundurao, P.K. Gupta, R.B. Pode, Studies of defects in YVO4: Pb2+, Eu3+ red phosphor material, Phys. Status Solidi (a) 198 (2003) 447– 456.

DOI: 10.1002/pssa.200306632

Google Scholar

[112] V. Nguyen, T.K.C. Tran, D.V. Nguyen, Combustion synthesis and characterization of Er3+-doped and Er3+, Yb3+-codoped YVO4 nanophosphors oriented for luminescent biolabeling applications, Adv. Nat. Sci.: Nanosci. Nanotechnol. 2 (2011) 1-5.

DOI: 10.1088/2043-6262/2/4/045011

Google Scholar

[113] S. Yi, J.S. Bae, B.K. Moon, J.H. Jeong, J. Park, I.W. Kim, Enhanced luminescence of pulsed-laser-deposited Y2O3: Eu3+ thin-film phosphors by Li doping, Appl. Phys. Lett. 81 (2002) 3344-3346.

DOI: 10.1063/1.1517404

Google Scholar

[114] Z. Zhang, Y. Zhang, X. Li, J. Xu, Y. Huang, Infrared spectra and luminescence properties of (Yx, Gd0. 95–x)BO3: Eu0. 053+, J. Alloys Compd. 455 (2008) 280–284.

DOI: 10.1016/j.jallcom.2007.01.010

Google Scholar

[115] W.J. Park, M.K. Jung, S.J. Im, D.H. Yoon, Photoluminescence characteristics of energy transfer between Bi3+ and Eu3+ in LnVO4: Eu, Bi (Ln =Y, La, Gd), Colloids Surf., A 313 (2008) 373–377.

DOI: 10.1016/j.colsurfa.2007.04.169

Google Scholar