Gas- and Shrinkage Porosities in Al-Si High-Pressure Die-Castings - Virtualization and Experimental Validation

Article Preview

Abstract:

The porosity (void caused by technological reasons) in engineering materials always decrease their mechanical characteristics and usually affects the deterioration of the functional mechanical characteristics of the finished products. In the castings the porosity resulting from the specific casting processes phenomena occurs inevitably in the matrix structure. The paper shows this problem in relation to the High-Pressure-Die-Casting (HPDC) technology of Al-Si alloy. The analysis of the experimental results and the results from virtualization of HPDC process allowed to assess the effectiveness of this mixed scenario and improve the quality predictions probability for HPDC, with particular consideration of shrinkage and gas porosities. The problem of the tolerance (admissibility) of porosity occurrence in castings and the castings made of liquid Al-Si alloy to which the gas (hydrogen) was introduced intentionally are signalized.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

80-91

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Campbell (2000): Castings, Butterworth-Heinemann.

Google Scholar

[2] Z. Ignaszak, J. Hajkowski, P. Popielarski: Archives of Foundry Engineering Vol. 13 (2013), p.45.

Google Scholar

[3] P. Pucher, H. Böttcher, H. Kaufmann, H. Antrekowitsch, P.J. Uggowitzer: Supplemental Proceedings: Vol. 2: Materials Fabrication, Properties, Characterization, and Modeling TMS (The Minerals, Metals&Materials Society) (2011), p.237.

DOI: 10.1002/9781118062142.ch30

Google Scholar

[4] D.E.J. Martinez, G.M.A. Cisneros, S. Valtierra, J. Lacaze: Scripta Materialia Vol. 52 (2005) p.439.

Google Scholar

[5] L. Bäckerud, G. Chai, J. Tamminen: AFS/Skanaluminum, Vol. 2 (1990), p.71.

Google Scholar

[6] F.H. Samuel, A.M. Samuel, H.W. Doty: AFS Trans. Vol. 104 (1996), p.893.

Google Scholar

[7] Z. Ignaszak, P. Popielarski, J. Hajkowski, J-B. Prunier: Defect Dif Forum Vols. 326-328 (2012), p.612.

DOI: 10.4028/www.scientific.net/ddf.326-328.612

Google Scholar

[8] L.A. Dobrzański, R. Nowosielski: Metody badań metali i stopów. Badania własności fizycznych (WNT, Warszawa 1987).

Google Scholar

[9] Z. Ignaszak, J. Hajkowski, P. Popielarski: Defect and Diffusion Forum Vols. 334-335 (2013), p.314.

DOI: 10.4028/www.scientific.net/ddf.334-335.314

Google Scholar

[10] NovaFlow&Solid ver. 4. 5. 5. system. Calibrate module.

Google Scholar

[11] Information on http: /www. migweld. de.

Google Scholar

[12] X.P. Niu, B. Hu, I. Pinwill, H. Li: J. Mat. Proc. Techn. (2000), Vol. 105, p.119.

Google Scholar

[13] G.O. Verrana, R.P. K Mendes, M.A. Rossi: J. Materials Processing Technology (2006), Vol. 179, p.190.

Google Scholar

[14] Z. Ignaszak: Virtual prototyping w odlewnictwie: bazy danych i walidacja (Publ. by Poznan University of Technology, Poznań 2002).

Google Scholar

[15] K. Eigenfeld, S. Klan, O. Wechselberger: Bull. Metals&Minerals, Tech Pomiarowa Vol. 2 (2001), p.42.

Google Scholar

[16] W. Hufnale, Aluminium-Taschenbuch (Aluminium-Verlag, Dusseldorf 1983).

Google Scholar

[17] Information on http: /www. foseco. com.

Google Scholar

[18] J. Hajkowski, Z. Ignaszak, M. Hajkowski, P. Popielarski: Report (2012). Unpublished work sponsored by Polish Ministry of Science and High Education, grant no N N508 444436, Poznan University of Technology.

Google Scholar