Multi-Scale Modeling of Internal Mass Diffusion Limitations in CO Oxidation Catalysts

Article Preview

Abstract:

This work applies a 3D multi-scale bottom-up approach for modeling the processes of diffusion and reaction-diffusion in porous catalyst layers. The performance of the random pore model to predict effective transport coefficients are compared with the results of the multi-scale diffusion model. The results of the 3D multi-scale diffusion model are employed in a 1D pseudo-homogeneous reaction-diffusion model with a relative good agreement with the 3D multi-scale reaction-diffusion model. Furthermore, the former multi-scale model was coupled to a full-scale reactor model with good results and high advantages in terms of computational time savings.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

92-103

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] M. V. Twigg: Catalysis Today Vol. 163 (2011), p.33.

Google Scholar

[2] S. E. Voltz, C. R. Morgan, D. Liederman and S. M. Jacob: Ind. Eng. Chem. Prod. Res. Develop. Vol. 12 (1973), p.294.

Google Scholar

[3] G. B. Froment and K. B. Bischoff: Chemical Reactor Analysis and Design (John Wiley & Sons, New York 1990).

Google Scholar

[4] J. Chen, H. Yang, N. Wang, Z. Ring and T. Dabros: Appl Catal A Gen Vol. 345 (2008), p.1.

Google Scholar

[5] N. Mladenov, J. Koop, S. Tischer and O. Deutschmann: Chem Eng Sci Vol. 65 (2010), p.812.

Google Scholar

[6] D. Leung, R. E. Hayes and S. T. Kolaczkowski: Can J Chem Eeng Vol. 74 (1996), p.94.

Google Scholar

[7] M. Pacheco, J. Sira and J. Kopasz: Appl Catal A Gen Vol. 250 (2003), p.161.

Google Scholar

[8] R. E. Hayes, B. Liu and M. Votsmeier: Chem Eng Sci Vol. 60 (2005), p. (2037).

Google Scholar

[9] A. P. Roberts: Phys Rev E Vol. 56 (1997), p.3203.

Google Scholar

[10] F. Ŝtěpánek and M. A. Ansari: Chem Eng Sci Vol. 60 (2005), p.4019.

Google Scholar

[11] R. Moreno-Atanasio, R. A. Williams and X. Jia: Particuology Vol. 8 (2010), p.81.

Google Scholar

[12] P. Koĉí, F. Ŝtěpánek, M. Kubíĉek and M. Marek: Chem Eng Sci Vol. 62 (2007), p.5380.

Google Scholar

[13] J. Becker, C. Wieser, S. Fell and K. Steiner: Int J Heat Mass Tran Vol. 54 (2011), p.1360.

Google Scholar

[14] M. Dudák, V. Novák, P. Koĉí M. Marek, P. Blanco-García and G. Jones: Appl Catal B Environ Vol 150-151 (2014), p.446.

Google Scholar

[15] N. Zamel, J. Becker and A. Wiegmann: J Power Sources Vol. 207 (2012), p.70.

Google Scholar

[16] A. T. Naseri, B. A. Peppley and J. G. Pharoah: AIChE J Vol. 60 (2014), p.2263.

Google Scholar

[17] V. Novák, P. Koĉí, F. Ŝtěpánek and M. Marek: Ind Eng Chem Res Vol. 50 (2011), p.12904.

Google Scholar

[18] J. M. C. Pereira, J. E. P. Navalho, A. C. G. Amador and J. C. F. Pereira: Chem Eng Sci Vol. 117 (2014), p.364.

Google Scholar

[19] V. Novák, F. Ŝtěpánek, P. Koĉí, M. Marek and M. Kubíĉek: Chem Eng Sci Vol. 65 (2010), p.2352.

Google Scholar

[20] B. E. Poling and J. M. Prausnitz and J. P. O'Connel: The Properties of Gases and Liquids (McGraw-Hill, New York 2001).

Google Scholar

[21] N. Wakao and J. M. Smith: Chem Eng Sci Vol. 17 (1962), p.825.

Google Scholar

[22] J. E. P. Navalho, I. Frenzel, A. Loukou, J. M. C. Pereira, D. Trimis and J. C. F. Pereira: Int J Hydrogen Energ Vol. 38 (2013), p.6989.

DOI: 10.1016/j.ijhydene.2013.02.141

Google Scholar

[23] J. E. P. Navalho, J. M. C. Pereira and J. C. F. Pereira: Int J Hydrogen Energ Vol. 39 (2014), p.3666.

Google Scholar

[24] J. E. P. Navalho: Modeling and Simulation of Catalytic Partial Oxidation in Monolith Reactors (MSc Thesis, Instituto Superior Técnico, Lisboa 2013).

Google Scholar

[25] L. O. E. dos Santos, P. C. Philippi, C. P. Fernandes and H. C. de Gaspari, in: Proceedings of the ENCIT (2002).

Google Scholar