Morphological Evolution in Heteroepitaxial Thin Film Structures at the Nanoscale

Article Preview

Abstract:

The aim of this study is to resolve the phenomenon of formation of mesoscopic structures on the surface of heteroepitaxial thin film system due to surface diffusion by considering the effects of both surface and interface stresses. Elastic stress field caused by curved surface is solved by using the constitutive equations of linear elasticity for the bulk and surface phases. Based on the method of superposition, a boundary perturbation technique, Goursat-Kolosov complex potentials and Muskhelishvili representations, the boundary value problem is reduced to the successive solution of a system of singular and hypersingular integral equations for any order of approximation. This solution and thermodynamic approach allows us to derive a governing equation which gives the amplitude changing of a surface roughness with time.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

112-121

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] R. J. Asaro and W. A. Tiller: Metal. Trans. Vol. 3 (1972), p.1789–1796.

Google Scholar

[2] M. A. Grinfeld: Sov. Phys. Doklady. Vol. 31 (1986), p.831–835.

Google Scholar

[3] D. J. Srolovitz: Acta Metall. Vol. 37 (1989), p.621–625.

Google Scholar

[4] B. J. Spencer, P. W. Voorhees and S. H. Davis: Phys. Rev. Lett. Vol. 67 (1991), p.3696–3699.

Google Scholar

[5] L. B. Freund and F. Jonsdottir: J. Mech. Phys. Solids. Vol. 41 (1993), p.1245–1255.

Google Scholar

[6] J. Grilhe: Acta Metall. Mater. Vol. 21 (1993), p.909–913.

Google Scholar

[7] C. -h. Chiu and H. Gao: Int. J. Solids Struct. Vol. 30 (1993), p.2983–3012.

Google Scholar

[8] W. H. Yang and D. J. Srolovitz: Phys. Rev. Lett. Vol. 71 (1993), p.1593–1596.

Google Scholar

[9] B. J. Spencer and D. I. Meiron: Acta Metall. Mater. Vol. 42 (1994), p.3629–3641.

Google Scholar

[10] C. H. Wu, J. Hsu and C. -h. Chen: Acta Mater. Vol. 46 (1998), p.3755–3760.

Google Scholar

[11] R. Panat, K. J. Hsia and D. G. Cahill: J. of Appl. Phys. Vol. 97 (2005), p.1–7.

Google Scholar

[12] J. -H. Kim and J. J. Vlassak: Int. J. Sol. Struct. Vol . 44 (2007), p.7924–7937.

Google Scholar

[13] J. H. Prevost, T. J. Baker, J. Liang and Z. Suo: Int. J. Sol. Struct. Vol. 38 (2001), p.5185–5203.

Google Scholar

[14] Z. Liu and H. -H. Yu: Thin Solid Films. Vol. 513 (2006), p.391–398.

Google Scholar

[15] M. E. Gurtin and A. Murdoch: Arch. Rat. Mech. An. Vol. 57 (1975), p.291–323.

Google Scholar

[16] M. E. Gurtin and A. Murdoch: Int. J. Sol. Struct. Vol. 14 (1978), p.431–440.

Google Scholar

[17] R.C. Cammarata and K. Sieradzki: Phys. Rev. Lett. Vol. 62 (1989), p.2005–(2008).

Google Scholar

[18] A. Fartash, E. E. Fullerton, I. K. Schuller, S. E. Bobbin, J. W. Wagner, R. C. Cammarata, S. Kumar and M. Grimsditch: Phys. Rev. B. Vol. 44 (1991), p.13760.

DOI: 10.1103/physrevb.44.13760

Google Scholar

[19] R. E. Miller and V. B. Shenoy: Nanotech. Vol. 11 (2000), p.139.

Google Scholar

[20] C. T. Sun and H. T. Zhang: J. Appl. Phys. Vol. 93 (2003), p.1212–1218.

Google Scholar

[21] H. T. Zhang and C. T. Sun: AIAA J. Vol. 42 (2004), p.2002–(2009).

Google Scholar

[22] L. G. Zhou and H. C. Huang: Appl. Phys. Lett. Vol. 84 (2004), p. (1940).

Google Scholar

[23] L. H. He, C. W. Lim and B. S. Wu: Int. J. Sol. Struct. Vol. 41 (2004), p.847–857.

Google Scholar

[24] Yu. I. Vikulina, M. A. Grekov and S. A. Kostyrko: Mech. Solids. Vol. 45 (2010), p.778–788.

DOI: 10.3103/s0025654410060038

Google Scholar

[25] M. A. Grekov and S. A. Kostyrko: J. Appl. Math. Mech. Vol. 77 (2013), p.79–90.

Google Scholar

[26] L. B. Freund: Int. J. Sol. Struct. Vol. 32 (1995), p.911–923.

Google Scholar

[27] N. I. Muskhelishvili: Some basic problems of the mathematical theory of elasticity (Noordhoff, Leiden 1977).

Google Scholar