Morphology and Structure of Nb3Sn Diffusion Layers in Superconductors with Tubular Nb Filaments

Article Preview

Abstract:

The structure and morphology of Nb3Sn layers in superconducting Nb/Cu-Sn composites with ring (tubular) Nb filaments have been studied by transmission (TEM) and scanning (SEM) electron microscopy after various regimes of diffusion annealing. It is demonstrated that the tubular geometry of Nb filaments, in which Sn diffuses from the bronze matrix both from inside and outside, ensures practically complete transformation of Nb into the superconducting Nb3Sn phase. Besides, at certain regimes of the diffusion annealing this geometry enables the improvement of the superconducting layers morphology compared to that of wires with continuous filaments, namely, to obtain wide Nb3Sn layers with fine equiaxed grains and to avoid the formation of columnar grains, which promotes enhanced current-carrying capacities of the wires.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

139-146

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I.W. Wu, D.R. Dietderich, J.T. Holthuis, M. Hong, W.V. Hassenzahl and J.W. Morris: J. Appl. Phys. Vol. 54(12) (1983), p.7139–7152.

DOI: 10.1063/1.331985

Google Scholar

[2] W. Martienssen and H. Warlymont: Springer Handbook of Condensed Matter and Materials Data (Springer, 2005).

Google Scholar

[3] I.L. Deryagina, E.N. Popova, E.P. Romanov, E.A. Dergunova, A.E. Vorob'eva and S.M. Balaev: Phys. Met. Metallogr. Vol. 113(4) (2012), p.391–405.

Google Scholar

[4] E.N. Popova, S.V. Sudareva, E.P. Romanov and L.A. Rodionova: Phys. Met. Metallogr. Vol. 78(5) (1994), pp.520-528.

Google Scholar

[5] E.N. Popova, E.P. Romanov and S.V. Sudareva: Phys. Met. Metallogr. Vol. 96(2) (2003), pp.146-159.

Google Scholar

[6] R. Flükiger, D. Uglietti, C. Senatore and F. Buta: Cryogenics Vol. 48 (2008), pp.293-307.

DOI: 10.1016/j.cryogenics.2008.05.005

Google Scholar

[7] C. Toffolon, C. Servant and J.C. Gachon: J. of Phase Equilibrium Vol. 23 (2002), pp.134-139.

Google Scholar

[8] V. Abächerli, D. Uglietti, P. Lezza, B. Seeber, R. Flükiger, M. Cantoni and P.A. Buffat: IEEE Trans. Appl. Supercond. Vol. 15(2) (2005), pp.3482-3485.

DOI: 10.1109/tasc.2005.849070

Google Scholar

[9] R. Flukiger: Supercond. Sci. Tech. Vol. 10 (1997), pp.872-875.

Google Scholar

[10] M. Nishi, K. Yoshida, T. Ando, Y. Takahashi, T. Isono, Y. Nunoya, M. Sugimoto, F. Hosono, Y. Wadayama, H. Ogata, Y. Yasukawa, T. Sasaki, H. Tsuji: Cryogenics Vol. 34. Suppl. 1. (1994), pp.505-508.

DOI: 10.1016/s0011-2275(05)80117-1

Google Scholar

[11] A.E. Vorobieva, A.K. Shikov, V.I. Pantsyrny, E.A. Dergunova, K.A. Mareev, D.A. Farafonov, L.I. Vojdaev and V.M. Lomaev: IEEE Trans. Appl. Supercond. Vol. 15(2) (2005), pp.3407-3409.

DOI: 10.1109/tasc.2005.848936

Google Scholar

[12] Sh. Ochiai, K. Osamura and M. Maekawa: Supercond. Sci. Technol. Vol. 4(6) (1991), pp.262-269.

Google Scholar

[13] I.L. Deryagina, E.N. Popova, E.G. Zaharevskaya, E.P. Romanov, A.E. Vorobyova, E.A. Dergunova and S. M. Balaev: Siber. Feder. Univ. J., Ser. Math. Phys. 4 (2) (2011) p.149–161.

Google Scholar

[14] E.N. Popova, L.A. Rodionova, V.V. Popov, E.P. Romanov, S.V. Sudareva, E.A. Dergunova, A.E. Vorob'yeva, O.V. Malafeeva and A.K. Shikov: Materialovedenie No. 3 (96) (2005), p.14–18.

Google Scholar

[15] B.A. Aleksashin, A.V. Soloninin, A.V. Korolev, V.P. Dyakina, E.N. Popova, E.P. Romanov and S.V. Sudareva: Phys. Met. Metallogr. Vol. 104(1) (2007) , pp.59-66.

DOI: 10.1134/s0031918x07070083

Google Scholar

[16] I.L. Deryagina, E.N. Popova, S.V. Sudareva, E.P. Romanov, L.V. Elokhina, E.A. Dergunova, A.E. Vorob'eva and I.M. Abdyukhanov: Phys. Met. Metallogr. Vol. 110(2) (2010), pp.162-174.

DOI: 10.1134/s0031918x10080065

Google Scholar