Diffusion of Oxygen in some Binary Ti-Based Alloys Used as Biomaterials

Article Preview

Abstract:

Ti and its alloys are widely used as biomaterials. Their main properties are excellent corrosion resistance, relatively low elastic modulus, high specific strength, and good biocompatibility. The development of new Ti alloys with properties favorable for use in the human body is desired. To this end, Ti alloys with Mo, Nb, Zr, and Ta are being developed, because these elements do not cause cytotoxicity. The presence of interstitial elements (such as oxygen and nitrogen) induces strong changes in the elastic properties of the material, which leads to hardening or softening of the alloy. By means of anelastic spectroscopy, we are able to obtain information on the diffusion of these interstitial elements present in the crystalline lattice. In this paper, the effect of oxygen on the anelastic properties of some binary Ti-based alloys was analyzed with anelastic spectroscopy. The diffusion coefficients, pre-exponential factors, and activation energies were calculated for oxygen and nitrogen in these alloys.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

165-173

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Park and R. S. Lakes: Biomaterials: an introduction (Springer, New York 2007).

Google Scholar

[2] E. W. Collings: The Physical Metallurgy of Titanium Alloys (ASM International, Ohio 1989).

Google Scholar

[3] M. Geetha, A.K. Singh, R. Asokamani, A.K. Gogia: Progress Materials Science Vol. 54 (2009), p.397.

Google Scholar

[4] J.G. Ferrero: Journal of Materials Engineering and Performance Vol. 14 (2005), pp.691-696.

Google Scholar

[5] B. Bannon, E. Mild: Titanium Alloys for Biomaterial Application: An Overview (American Society for Testing and Materials, Phoenix 1983).

Google Scholar

[6] P.G. Laing, A.B. Ferguson, E.S. Hodge: J. Biomedical Materials Research Vol. 1 (1967), p.135.

Google Scholar

[7] D.R.C. McLachlan, B. Farnell, H. Galin: Aluminum in human brain disease (Ravon Press, New York 1983).

Google Scholar

[8] D. Banerjee and J. C. Williams: Acta Materialia Vol. 61 (2013), pp.844-879.

Google Scholar

[9] Y. Li, C. Yang, H. Zhao, S. Qu, X. Li and Y. Li: Materials Vol. 7 (2014), pp.1709-1800.

Google Scholar

[10] X. Zhao, M. Niinomi, M. Nakai and J. Hieda: Acta Biomaterialia Vol. 8 (2012), p.1990-(1997).

Google Scholar

[11] C. M. Lee, C. P. Ju and J. H. Lin: Journal of Oral Rehabilitation Vol. 29 (2002), pp.314-322.

Google Scholar

[12] L. M. da Silva, A. P. R. A. Claro, T. A. G. Donato, V. E. Arana-Chavez, J. C. S. Moraes, M. A. R. Buzalaf and C. R. Grandini: Artificial Organs Vol. 35 (2011), pp.516-521.

DOI: 10.1111/j.1525-1594.2011.01263.x

Google Scholar

[13] L. M. d. Silva, A. P. R. A. Claro, M. A. R. Buzalaf and C. R. Grandini: Materials Research Vol. 15 (2012), pp.355-358.

Google Scholar

[14] Y. L. Zhou, M. Niinomi and T. Akahori: Materials Science and Engineering: A Vol. 371 (2004), p.283.

Google Scholar

[15] Y. -L. Zhou and D. -M. Luo: Journal of Alloys and Compounds Vol. 509 (2011), pp.6267-6272.

Google Scholar

[16] W. -F. Ho, W. -K. Chen, S. -C. Wu, H. -C. Hsu: J Mater Sci: Mater Med Vol. 19 (2008), p.3179.

Google Scholar

[17] D. R. N. Correa, F. B. Vicente, T. A. G. Donato, V. E. Arana-Chavez, M. A. R. Buzalaf and C. R. Grandini: Materials Science and Engineering: C Vol. 34 (2014), pp.354-359.

DOI: 10.1016/j.msec.2013.09.032

Google Scholar

[18] W. F. Ho, C. P. Ju and J. H. Chern Lin: Biomaterials Vol. 20 (1999), pp.2115-2122.

Google Scholar

[19] N. T. C. Oliveira, G. Aleixo, R. Caram and A. C. Guastaldi: Materials Science and Engineering: A Vol. 452-453 (2007), pp.727-731.

DOI: 10.1016/j.msea.2006.11.061

Google Scholar

[20] M. Niinomi: Materials Science and Engineering A Vol. 243 (1998), pp.231-236.

Google Scholar

[21] Y. Okazaki, S. Rao, Y. Ito and T. Tateishi: Biomaterials Vol. 19 (1998), pp.1197-1215.

Google Scholar

[22] S. Rao, Y. Okazaki, T. Tateishi, T. Ushida and Y. Ito: Materials Science and Engineering: C Vol. 4 (1997), pp.311-314.

Google Scholar

[23] C. Leyens and M. Peters: Titanium and Titanium Alloys: Fundamentals and Applications (Wiley-VCH, New York 2005).

Google Scholar

[24] R. Cantelli: Materials Science and Engineering: A Vol. 442 (2006), pp.5-20.

Google Scholar

[25] J. D. Fast: Gases in Metals (Macmillan, London 1976).

Google Scholar

[26] J. L. Snoek: Physica Vol. 8 (1941), pp.711-733.

Google Scholar

[27] A.S. Nowick, B.S. Berry: Anelastic Relaxation in Crystalline Solids (Academic Press, New York 1972).

Google Scholar

[28] L.H. Almeida, C.R. Grandini, R. Caram: Mat Sci Eng: A Vol. 521-522 (2009), p.59.

Google Scholar

[29] R. Schaller, G. Fantozzi and G. Gremaud: Mechanical Spectroscopy 2001 (Trans Tech Publications, Stafa-Zurich 2001).

Google Scholar

[30] M. S. Blanter, I. S. Golovin, H. Neuhäuser and H. -R. Sinning: Internal Friction in Metallic Materials: A Handbook (Springer-Verlag, Heidelberg 2007).

DOI: 10.1007/978-3-540-68758-0

Google Scholar

[31] H. Mehrer: Diffusion in Solids: Fundamentals, Methods, Materials, Diffusion-Controlled Processes (Spinger-Verlag, Berlin 2007).

Google Scholar

[32] J.R.S. Martins Júnior, R.A. Nogueira, R.O. Araújo, et al.: Mat Research Vol. 14 (2011), p.107.

Google Scholar

[33] C. R. Grandini: Revista Brasileira de Aplicações de Vácuo Vol. 21 (2002), pp.13-16.

Google Scholar

[34] R. A. Nogueira, C. R. Grandini and A. P. R. A. Claro: J Mater Sci Vol. 43 (2008), p.5977.

Google Scholar

[35] A. Puskar: Internal Friction of Materials (Cambridge International Sci. Publishing, Cambridge 2001).

Google Scholar

[36] R. A. Nogueira and C. R. Grandini: Defect and Diffusion Forum Vol. 326-328 (2012), p.702.

Google Scholar

[37] J. R. S. M. Júnior, R. A. Nogueira, R. O. d. Araújo and C. R. Grandini: Defect and Diffusion Forum Vol. 326-328 (2012), pp.696-701.

Google Scholar

[38] M. Weller, G. Y. Li, J. X. Zhang, T. S. Kê and J. Diehl: Acta Metallurgica Vol. 29 (1981), p.1047.

Google Scholar

[39] R. Kirchheim: Acta Metallurgica Vol. 30 (1982), pp.1069-1078.

Google Scholar

[40] A. C. d. Souza, C. R. Grandini and O. Florêncio: Deffect and Diffusion Forum Vol. 273-276 (2008), pp.261-265.

Google Scholar

[41] C.R. Grandini, L.M. Silva, L.H. Almeida, O. Florêncio, H.R.Z. Sandim: Def Diff Forum Vol. 273-276 (2008), p.256.

Google Scholar

[42] I. V. Belova and G. E. Murch: Philosophical Magazine Vol. 85 (2005), pp.4515-4523.

Google Scholar