Emission Nuclear Gamma-Resonance Spectroscopy of Grain Boundaries in Coarse-Grained and Ultrafine-Grained Polycrystalline Mo

Article Preview

Abstract:

Grain boundaries in coarse-grained Mo with grain boundaries of recrystallization origin and in ultrafine-grained (UFG) Mo obtained by high pressure torsion have been studied by the emission Mössbauer spectroscopy on the 57Co (57Fe) nuclei. It is demonstrated that Co atoms diffuse along grain boundaries by interstitials. The temperature dependence of grain-boundary segregation factor of Co in coarse-grained Mo has been determined. It is shown that the state of Co atoms in grain boundaries and near-boundary areas in UFG Mo differs from that in coarse-grained Mo.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

147-156

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] V.V. Popov: Phys. Met. Metallogr. Vol. 113 (2012), pp.1257-1289.

Google Scholar

[2] V.N. Kaigorodov and S.M. Klotsman: Pisma JETF (Lett. J. Exp. Theor. Phys. ) [in Russian] Vol. 28 (1978), pp.386-388.

Google Scholar

[3] V.N. Kaigorodov and S.M. Klotsman: Phys. Rev. B Vol. 49 (1994), pp.9374-9399.

Google Scholar

[4] O. Schneeweiss, J. Čermák, I. Turek and P. Lejček: Hyperfine Interact. Vol. 126 (2000), p.215–218.

DOI: 10.1023/a:1012611006412

Google Scholar

[5] V.N. Kaigorodov, V.V. Popov, E.N. Popova, T.N. Pavlov and S.V. Efremova: J. Phase Equil. Diff. Vol. 26 (2005), pp.510-515.

Google Scholar

[6] V.V. Popov: Def. Diff. Forum Vol. 258-260 (2006), pp.497-508.

Google Scholar

[7] V.V. Popov: Phys. Met. Metallogr. Vol. 113 (2012), pp.883-887.

Google Scholar

[8] Yu.R. Kolobov, R. Z Valiev, G.P. Grabovetskaya et al.: Grain boundary diffusion and properties of nanostructured materials [in Russian] (Novosibirsk, Nauka 2001).

Google Scholar

[9] R.Z. Valiev and I.V. Aleksandrov: Bulk nanostructured metal materials [in Russian] (Moscow, Academkniga 2007).

Google Scholar

[10] V.V. Popov, V.N. Kaigorodov, E.N. Popova and A.V. Stolbovsky: Def. Diff. Forum Vol. 263 (2007), pp.69-74.

Google Scholar

[11] V.V. Popov: Def. Diff. Forum Vol. 273-276 (2008), pp.506-513.

Google Scholar

[12] V.V. Popov, R.Z. Valiev, E.N. Popova, A.V. Sergeev, A.V. Stolbovsky and V.U. Kazihanov: Def. Diff. Forum Vol. 283-286 (2009), pp.629-638.

DOI: 10.4028/www.scientific.net/ddf.283-286.629

Google Scholar

[13] V.V. Popov: Phys. Met. Metallogr. Vol. 102(5) (2006), pp.453-461.

Google Scholar

[14] V.V. Popov: Sol. State Phenom. Vol. 138 (2008), pp.133-144.

Google Scholar

[15] Diffusion in solid metals and alloys (Ed. H. Mehrer, Springer-Verlag 1990).

Google Scholar

[16] G.N. Belozerskii, Mössbauer Spectroscopy as a Method of Surface Investigations (Moscow, ENERGOATOMIZDAT, 1990 [in Russian]).

Google Scholar

[17] V.I. Gol'danskii, The Mössbauer Effect and its Applications in Chemistry (American Chemical Society, Washington, DC, 1967).

Google Scholar

[18] V.N. Kaigorodov, S.M. Klotsman, M.I. Kurkin, V.V. Dyakin and D.V. Zherebtsov: Phys. Met. Metallogr. Vol. 85(2) (1998), pp.212-217.

Google Scholar

[19] Mossbauer Effect Data Center (www. unca. edu/medc).

Google Scholar

[20] V.V. Popov, G.P. Grabovetskaya, A.V. Sergeev, I.P. Mishin, A.N. Timofeev and E.V. Kovalenko: Phys. Met. Metallogr. Vol. 109( 5) (2010), p.556–562.

DOI: 10.1134/s0031918x10050169

Google Scholar

[21] V.V. Popov, G.P. Grabovetskaya, A.V. Sergeev and I.P. Mishin: Def. Diff. Forum Vol. 326-328 (2012), pp.674-681.

Google Scholar