Interdiffusion and Reaction between Pure Magnesium and Aluminum Alloy 6061

Article Preview

Abstract:

Using solid-to-solid couples investigation, this study characterized the reaction products evolved and quantified the diffusion kinetics when pure Mg bonded to AA6061 is subjected to thermal treatment at 300°C for 720 hours, 350°C for 360 hours, and 400°C for 240 hours. Characterization techniques include optical microscopy, scanning electron microscopy with X-ray energy dispersive spectroscopy, and transmission electron microscopy. Parabolic growth constants were determined for γ-Mg17Al12, β-Mg2Al3, and the elusive ε-phase. Similarly, the average effective interdiffusion coefficients of major constituents were calculated for Mg (ss), γ-Mg17Al12, β-Mg2Al3, and AA6061. The activation energies and pre-exponential factors for both parabolic growth constant and average effective interdiffusion coefficients were computed using the Arrhenius relationship. The activation energy for growth of γ-Mg17Al12 was significantly higher than that for β-Mg2Al3 while the activation energy for interdiffusion of γ-Mg17Al12 was only slightly higher than that for β-Mg2Al3. Comparisons are made between the results of this study and those of diffusion studies between pure Mg and pure Al [1] to examine the influence of alloying additions in AA6061.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

174-181

Citation:

Online since:

June 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S. Brennan, K. Bermudez, N. Kulkarni, Y.H. Sohn, Interdiffusion and Intrinsic Diffusion in Mg-Al System, Metallurgical and Materials Transactions A, 43A, (2012) 4043.

DOI: 10.1007/s11661-012-1248-8

Google Scholar

[2] D.D. Keiser, S.L. Hayes, M.K. Meyer, C.R. Clark, High-density, Low-enriched Uranium Fuel for Nuclear Research Reactors, Journal of Metals (JOM), (2003) 55.

DOI: 10.1007/s11837-003-0031-0

Google Scholar

[3] J.L. Snelgrove, G.L. Hofman, M.K. Meyer, C.L. Trybus, T.C. Wiencek, Development of very-high-density low-enriched-uranium fuels, Nuclear Engineering and Design, 178 (1997) 119.

DOI: 10.1016/s0029-5493(97)00217-3

Google Scholar

[4] D. Wachs, D.D. Keiser Jr, M.K. Meyer, D. Burkes, C. Clark, G. Moore, J-F Jue, T. Totev, G.L. Hofman, T. Wiencek, Y.S. Kim, J. Snelgrove, High density fuel development for research reactors, Global 2007-Advanced Nuclear Fuel Cycles and Systems, (2007).

Google Scholar

[5] E. Perez, D.D. Keiser, Jr., Y.H. Sohn, Phase Constituents and Microstructure of Interaction Layer Formed in U-Mo Alloys vs. Al Diffusion Couple Annealed at 600°C, Metallurgical and Materials Transactions A, 42 (2011) 3071.

DOI: 10.1007/s11661-011-0733-9

Google Scholar

[6] M.K. Meyer, G.L. Hofman, S.L. Hayes, C.R. Clark, T.C. Wiencek, J.L. Snelgrove, R.V. Strain, K.H. Kim, Low-temperature irradiation behavior of uranium-molybdenum alloy dispersion fuel, Journal of Nuclear Materials, 304 (2002) 221.

DOI: 10.1016/s0022-3115(02)00850-4

Google Scholar

[7] A. Leenaer, S. Van den Berghe, E. Koonen, C. Jarousse, F. Huet, M. Trotabas, M. Boyard, S. Guillot, L. Sannen, M. Verwerft, Post-irradiation examination of uranium-7 wt% molybdenum atomized dispersion fuel, Journal of Nuclear Materials, 335 (2004).

DOI: 10.1016/j.jnucmat.2004.07.004

Google Scholar

[8] E. Perez, B. Yao, D.D. Keiser Jr, Y.H. Sohn, Microstructural analysis of as-processed U-10 wt. %Mo monolithic fuel plate in AA6061 matrix with Zr diffusion barrier, Journal of Nuclear Materials, 402 (2010) 8.

DOI: 10.1016/j.jnucmat.2010.04.016

Google Scholar

[9] D.D. Keiser Jr, J.F. Jue, B. Yao, E. Perez, Y.H. Sohn, C.R. Clark, Microstructural characterization of U-7Mo/Al-Si alloy matrix dispersion fuel plates fabricated at 500°C, Journal of Nuclear Materials, 412 (2011) 90.

DOI: 10.1016/j.jnucmat.2011.02.027

Google Scholar

[10] B. Yao, E. Perez, D.D. Keiser Jr, J.F. Jue, C.R. Clark, N. Woolstenhulme, Y.H. Sohn, Microstructure characterization of as-fabricated and 475 °C annealed U-7 wt. % Mo dispersion fuel in Al-Si alloy matrix, Journal of Alloys and Compounds, 509 (2011).

DOI: 10.1016/j.jallcom.2011.07.048

Google Scholar

[11] A. Leenaers, S. Van den Berghe, W. Van Renterghem, F. Charollais, P. Lemoine, C. Jarousse, A. Rohrmoser, W. Petry, Irradiation behavior of ground U(Mo) fuel with and without Si added to the matrix, Journal of Nuclear Materials, 412 (2011) 41.

DOI: 10.1016/j.jnucmat.2011.02.002

Google Scholar

[12] X. Liu, T.C. Lu, Z.H. Xing, D.Z. Qian, Effects of different irradiation conditions on swelling performance of U(10)Mo-Al dispersion fuel, Rare Metal Materials Engineering, 40 (2011) 1125.

Google Scholar

[13] F. Mazaudier, C. Proye, F. Hodaj, Further insight into mechanisms of solid-state interactions in UMo/Al system, Journal of Nuclear Materials, 377 (2008) 476.

DOI: 10.1016/j.jnucmat.2008.04.016

Google Scholar

[14] C. Komar-Varela, M. Mirandou, S. Aricó, S. Balart, L. Gribaudo, Interdiffusion between U(Mo, Pt) or U(Mo, Zr) and Al or Al A356 alloy, Journal of Nuclear Materials, 395 (2009) 162.

DOI: 10.1016/j.jnucmat.2009.10.050

Google Scholar

[15] Y. Kim, G.L. Hofman, H. Ryu, S.L. Hayes, Irradiation-enhanced interdiffusion in the diffusion zone of U-Mo dispersion fuel in Al, Journal of Phase Equilibria and Diffusion, 27 (2006) 614.

DOI: 10.1361/154770306x153639

Google Scholar

[16] H. Ryu, J. Park, C. Kim, Y. Kim, G.L. Hofman, Diffusion reaction behaviors of U-Mo/Al dispersion fuel, Journal of Phase Equilibria and Diffusion, 27 (2006) 651.

DOI: 10.1361/154770306x153693

Google Scholar

[17] T.C. Wiencek, I.G. Prokofiev, D.J. McGann, Development and compatibility of magnesium-matrix fuel plates clad with 6061 aluminum alloy, 1998 International Meeting on Reduced Enrichment for Research and Test Reactors, (1998).

Google Scholar

[18] K. Huang, H. Heinrich, D.D. Keiser, Jr., Y.H. Sohn, Fuel-Matrix Chemical Interaction Between U-7wt. %Mo Alloy and Mg, Defects and Diffusion Forum, 333 (2013) 199.

DOI: 10.4028/www.scientific.net/ddf.333.199

Google Scholar

[19] S. Laxman, B. Franke, B.W. Kempshall, Y.H. Sohn, L.A. Giannuzzi, K.S. Murphy, Phase transformations of thermally grown oxide on (Ni, Pt)Al bondcoat during electron beam physical vapor deposition and subsequent oxidation, Surface and Coatings Technology, 177/8 (2004).

DOI: 10.1016/j.surfcoat.2003.08.072

Google Scholar

[20] C. Brubaker, Z.K. Liu, Diffusion couple study of the Mg-Al system, Magnesium Technology, 2004, 229.

Google Scholar

[21] M.A. Dayananda, C.W. Kim, Zero-flux planes and flux reversals in Cu-Ni-Zn diffusion couples, Metallurgical Transactions, 10 (1979) 1333.

DOI: 10.1007/bf02811989

Google Scholar

[22] M.A. Dayananda, Y.H. Sohn, Average effective interdiffusion coefficients and their applications for isothermal multicomponent diffusion couples, Scripta Materialia, 35 (1996) 683.

DOI: 10.1016/1359-6462(96)00145-5

Google Scholar