[1]
S. Brennan, K. Bermudez, N. Kulkarni, Y.H. Sohn, Interdiffusion and Intrinsic Diffusion in Mg-Al System, Metallurgical and Materials Transactions A, 43A, (2012) 4043.
DOI: 10.1007/s11661-012-1248-8
Google Scholar
[2]
D.D. Keiser, S.L. Hayes, M.K. Meyer, C.R. Clark, High-density, Low-enriched Uranium Fuel for Nuclear Research Reactors, Journal of Metals (JOM), (2003) 55.
DOI: 10.1007/s11837-003-0031-0
Google Scholar
[3]
J.L. Snelgrove, G.L. Hofman, M.K. Meyer, C.L. Trybus, T.C. Wiencek, Development of very-high-density low-enriched-uranium fuels, Nuclear Engineering and Design, 178 (1997) 119.
DOI: 10.1016/s0029-5493(97)00217-3
Google Scholar
[4]
D. Wachs, D.D. Keiser Jr, M.K. Meyer, D. Burkes, C. Clark, G. Moore, J-F Jue, T. Totev, G.L. Hofman, T. Wiencek, Y.S. Kim, J. Snelgrove, High density fuel development for research reactors, Global 2007-Advanced Nuclear Fuel Cycles and Systems, (2007).
Google Scholar
[5]
E. Perez, D.D. Keiser, Jr., Y.H. Sohn, Phase Constituents and Microstructure of Interaction Layer Formed in U-Mo Alloys vs. Al Diffusion Couple Annealed at 600°C, Metallurgical and Materials Transactions A, 42 (2011) 3071.
DOI: 10.1007/s11661-011-0733-9
Google Scholar
[6]
M.K. Meyer, G.L. Hofman, S.L. Hayes, C.R. Clark, T.C. Wiencek, J.L. Snelgrove, R.V. Strain, K.H. Kim, Low-temperature irradiation behavior of uranium-molybdenum alloy dispersion fuel, Journal of Nuclear Materials, 304 (2002) 221.
DOI: 10.1016/s0022-3115(02)00850-4
Google Scholar
[7]
A. Leenaer, S. Van den Berghe, E. Koonen, C. Jarousse, F. Huet, M. Trotabas, M. Boyard, S. Guillot, L. Sannen, M. Verwerft, Post-irradiation examination of uranium-7 wt% molybdenum atomized dispersion fuel, Journal of Nuclear Materials, 335 (2004).
DOI: 10.1016/j.jnucmat.2004.07.004
Google Scholar
[8]
E. Perez, B. Yao, D.D. Keiser Jr, Y.H. Sohn, Microstructural analysis of as-processed U-10 wt. %Mo monolithic fuel plate in AA6061 matrix with Zr diffusion barrier, Journal of Nuclear Materials, 402 (2010) 8.
DOI: 10.1016/j.jnucmat.2010.04.016
Google Scholar
[9]
D.D. Keiser Jr, J.F. Jue, B. Yao, E. Perez, Y.H. Sohn, C.R. Clark, Microstructural characterization of U-7Mo/Al-Si alloy matrix dispersion fuel plates fabricated at 500°C, Journal of Nuclear Materials, 412 (2011) 90.
DOI: 10.1016/j.jnucmat.2011.02.027
Google Scholar
[10]
B. Yao, E. Perez, D.D. Keiser Jr, J.F. Jue, C.R. Clark, N. Woolstenhulme, Y.H. Sohn, Microstructure characterization of as-fabricated and 475 °C annealed U-7 wt. % Mo dispersion fuel in Al-Si alloy matrix, Journal of Alloys and Compounds, 509 (2011).
DOI: 10.1016/j.jallcom.2011.07.048
Google Scholar
[11]
A. Leenaers, S. Van den Berghe, W. Van Renterghem, F. Charollais, P. Lemoine, C. Jarousse, A. Rohrmoser, W. Petry, Irradiation behavior of ground U(Mo) fuel with and without Si added to the matrix, Journal of Nuclear Materials, 412 (2011) 41.
DOI: 10.1016/j.jnucmat.2011.02.002
Google Scholar
[12]
X. Liu, T.C. Lu, Z.H. Xing, D.Z. Qian, Effects of different irradiation conditions on swelling performance of U(10)Mo-Al dispersion fuel, Rare Metal Materials Engineering, 40 (2011) 1125.
Google Scholar
[13]
F. Mazaudier, C. Proye, F. Hodaj, Further insight into mechanisms of solid-state interactions in UMo/Al system, Journal of Nuclear Materials, 377 (2008) 476.
DOI: 10.1016/j.jnucmat.2008.04.016
Google Scholar
[14]
C. Komar-Varela, M. Mirandou, S. Aricó, S. Balart, L. Gribaudo, Interdiffusion between U(Mo, Pt) or U(Mo, Zr) and Al or Al A356 alloy, Journal of Nuclear Materials, 395 (2009) 162.
DOI: 10.1016/j.jnucmat.2009.10.050
Google Scholar
[15]
Y. Kim, G.L. Hofman, H. Ryu, S.L. Hayes, Irradiation-enhanced interdiffusion in the diffusion zone of U-Mo dispersion fuel in Al, Journal of Phase Equilibria and Diffusion, 27 (2006) 614.
DOI: 10.1361/154770306x153639
Google Scholar
[16]
H. Ryu, J. Park, C. Kim, Y. Kim, G.L. Hofman, Diffusion reaction behaviors of U-Mo/Al dispersion fuel, Journal of Phase Equilibria and Diffusion, 27 (2006) 651.
DOI: 10.1361/154770306x153693
Google Scholar
[17]
T.C. Wiencek, I.G. Prokofiev, D.J. McGann, Development and compatibility of magnesium-matrix fuel plates clad with 6061 aluminum alloy, 1998 International Meeting on Reduced Enrichment for Research and Test Reactors, (1998).
Google Scholar
[18]
K. Huang, H. Heinrich, D.D. Keiser, Jr., Y.H. Sohn, Fuel-Matrix Chemical Interaction Between U-7wt. %Mo Alloy and Mg, Defects and Diffusion Forum, 333 (2013) 199.
DOI: 10.4028/www.scientific.net/ddf.333.199
Google Scholar
[19]
S. Laxman, B. Franke, B.W. Kempshall, Y.H. Sohn, L.A. Giannuzzi, K.S. Murphy, Phase transformations of thermally grown oxide on (Ni, Pt)Al bondcoat during electron beam physical vapor deposition and subsequent oxidation, Surface and Coatings Technology, 177/8 (2004).
DOI: 10.1016/j.surfcoat.2003.08.072
Google Scholar
[20]
C. Brubaker, Z.K. Liu, Diffusion couple study of the Mg-Al system, Magnesium Technology, 2004, 229.
Google Scholar
[21]
M.A. Dayananda, C.W. Kim, Zero-flux planes and flux reversals in Cu-Ni-Zn diffusion couples, Metallurgical Transactions, 10 (1979) 1333.
DOI: 10.1007/bf02811989
Google Scholar
[22]
M.A. Dayananda, Y.H. Sohn, Average effective interdiffusion coefficients and their applications for isothermal multicomponent diffusion couples, Scripta Materialia, 35 (1996) 683.
DOI: 10.1016/1359-6462(96)00145-5
Google Scholar