Investigation of Defects in Hydrogen-Saturated Titanium by Means of Positron Annihilation Techniques

Article Preview

Abstract:

This paper presents the results of a defect structure investigation in commercially pure titanium alloy after hydrogen charging in a gaseous atmosphere at the temperature of 873 K up to the concentration of 5.1 at. %. Structure of samples was studied by positron lifetime, Doppler broadening and X-ray diffraction spectrometry. Several processes, corresponding to the different ranges of hydrogen concentrations were revealed. It was shown that hydrogen, penetrating in the material, expands its crystal lattice, initiates formation of vacancy-like defects of different dimensions and reacts with the last ones, forming the defect-hydrogen complexes.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

232-236

Citation:

Online since:

July 2015

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2015 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] С.А. Wert: Hydrogen in metals. Topics in applied physics. 29 (1978), p.305–330.

Google Scholar

[2] Y.S. Bordulev, R.S. Laptev, V.N. Kudiyarov, A.M. Lider: Advanced Materials Research. Vol. 880, 93 (2014).

Google Scholar

[3] R.S. Laptev, Y.S. Bordulev, V.N. Kudiyarov, A.M. Lider, G.V. Garanin: Advanced Materials Research, Vol. 880, 134 (2014).

Google Scholar

[4] Y. Fukai, N. Okuma: Phys. Rev. Lett. 73 (1994), p.1640–1643.

Google Scholar

[5] Y. Shirai, H. Araki, T. Mori, W. Nakamura, K. Sakaki: J. Alloys Compd. 330 (2002), p.125–131.

Google Scholar

[6] J. Cizek, I. Prochazka, S. Danis, M. Cieslar, G. Brauer, W. Anwand, R. Kirchheim, A. Pundt: Journal of Alloys and Compounds. 446-447 (2007), pp.479-483.

DOI: 10.1016/j.jallcom.2006.11.105

Google Scholar

[7] J. Cizek, I. Prochazka, F. Becvar, R. Kuzel, M. Cieslar, G. Brauer, W. Anwand, R. Kirchheim, A. Pundt: Physical Review. B 69 224106 (2004).

Google Scholar

[8] R. Krause-Rehberg, H.S. Leipner. Positron Annihilation in Semiconductors: Defect Studies, third ed., Berlin Heidelberg, New York (2003).

Google Scholar

[9] V.I. Grafutin, E.P. Prokop'ev: Physics-Uspekhi. 172, 1 (2002), p.67–83.

Google Scholar

[10] A. Dupasquier, A.P. Mills: Proceedings International School of Physics Enrico Fermi, Course CXXV. (1995).

Google Scholar

[11] G.J.C. Carpenter, H.T. Easterday, B.T.A. McKee: Journal of Nuclear Materials. 116 (1983), pp.277-286.

Google Scholar

[12] Y. Chen, X. Wan, F. Li et al.: Materials Science and Engineering: A. 466 (2007), p.156–159.

Google Scholar

[13] V.N. Kudiiarov, L.V. Gulidova, N.S. Pushilina, A.M. Lider: Advanced Materials Research. 740 (2013), pp.690-693.

DOI: 10.4028/www.scientific.net/amr.740.690

Google Scholar

[14] L.V. Gulidova, V.N. Kudiiarov, N.A. Dubrova, A.M. Lider: Alternativnaya energetika i ekologiya. 03. 2 (2013), p.32–35.

Google Scholar

[15] D. Giebel, J. Kansy: Materials Science Forum. 666 (2010), pp.138-141.

Google Scholar

[16] J. Cizek, M. Vlcek, I. Prochazka: Nuclear Instruments and Methods in Physics Research Section A. 623 (2010), pp.982-994.

Google Scholar

[17] Information on http: /www. ifj. edu. pl/~mdryzek/page_h1. html.

Google Scholar

[18] J. M. Campillo Robles, E. Ogando, F. Plazaola: J. Phys.: Condens. Matter 19 (2007) 176222.

Google Scholar

[19] L.V. Spivak. Hydrogen in metals. Perm (2011), p.149.

Google Scholar

[20] J. Cizek, O. Melikhova, Z. Barnovska, R. K. Islamgaliev: Journal of Physics: Conference Series 443 (2013) 012008.

Google Scholar

[21] H. E Hansen, R M Nieminen and M J Puska: J. Phys. F: Met. Phys. 14 (1984), p.1299.

Google Scholar

[22] J. Cizek. Investigation of Crystal Lattice Defects in Deformation and Irradiation Damaged Solids by Means of Positron Annihilation. Prague (2001), p.98.

Google Scholar