Concentration Dependence of Grain Boundary Diffusion

Article Preview

Abstract:

According to different experimental data the grain boundary diffusion the triple product (P) can change in opposite directions after alloying. In this paper the analysis of the effect of alloying for different systems is proposed. It was shown that in Al-based system (Cu diffusion in Al, Zn diffusion in Al) the P value increases with alloying while the solidus temperature according to the phase diagram decreases, in other systems no such tendency can be seen. Estimations based on the segregation factor value demonstrate that some structural effect must be proposed in addition to describe the experimental results.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

1-5

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Y.E. Ugaste, Y.A. Zaykin: Fiz. Metal. Metalloved. Vol. 40 (3) (1975), p.567.

Google Scholar

[2] A. Vignes, C. Birchenall: Acta Met., Vol. 16 (1968), p.1117.

Google Scholar

[3] L. Darken: Trans. AIME Vol. 175, (1948), p.184.

Google Scholar

[4] D. Prokoshkina, A.O. Rodin, V. Esin: Def. and Dif. Forum Vol. 323-325 (2012), p.171.

Google Scholar

[5] G. B. Gibbs, Phys. Stat. Solidi, Vol. 16 (1) (1966), k27-k29.

Google Scholar

[6] T. Frolov, D.L. Olmsted, M. Asta and Yu. Mishin: Nature Com. Vol. 10 (2013), p.1038.

Google Scholar

[7] A. Hassner: Kristall u. Technik 8 (1973), k1.

Google Scholar

[8] Dolgopolov N.; Rodin A.; Simanov, A. et al.: Mat. Letters Vol. 62 (30) (2008), p.4477.

Google Scholar

[9] A. Rodin, N. Dolgopolov, S. Kryukov: Def. and Dif. Forum Vol. 323-325 (2012), 165.

Google Scholar

[10] K. Przybylovitch, I. Suliga: Solid State Phenomena, 72 (2000), 229.

Google Scholar

[11] M. Astahov, B. Bokstein, A. Rodin, M. Sinyaev: Izv. Vuzov, Non-ferr. Met. Vol. 4 (1998), 1.

Google Scholar

[12] B.S. Bokstein and A.O. Rodin: Proc. Of Int. Conference Mass and Charge Transport in Solids, 2000, Lido di Jesolo, Italy. p.262.

Google Scholar

[13] Rodin A., Dolgopolov N.: Proc. MS and T-2014 Vol. 3 (2014), p.1867.

Google Scholar

[14] A. Pineau et al.: Acta Met. 31, 7 (1983), 1047–1052.

Google Scholar

[15] S. Zhevnenko, D. Vaganov: Def. and Dif. Forum Vol. 323-325 (2012), p.223.

Google Scholar

[16] J. Bernardini et al.: Def. and Dif. Forum, Vol. 173 (2005), p.525.

Google Scholar

[17] Surholt T, Herzig Chr.: Acta Mater. Vol. 45 (1997), p.3817.

Google Scholar

[18] Zs. Tôkei et al.: Phil. Mag. A Vol. 80 (5) (2000), p.1075.

Google Scholar

[19] J. Bernardini et al.: Phil. Mag. A Vol. 73 (1) (1996), p.237.

Google Scholar

[20] B. S. Bokstein, V. E. Fradkov and D. L. Beke: Phil. Mag. Vol. 65 (2) (1992), p.277.

Google Scholar

[21] B. Bokstein, A. Ostrovsky, A. Rodin: Phil. Mag. A. Vol. 72 (4) (1995), p.829.

Google Scholar

[22] V. Esin, B. Bokstein, A. Rodin: Def. and Dif. Forum Vol. 309-310 (2011) p.29.

Google Scholar

[23] Bokshtein B., Esin V., Rodin A.: The Phys. Met. and Metall. Vol. 109 (4) (2010). p.316.

Google Scholar

[24] I. Godeny, D.L. Beke, F.J. Kedves: Trans. Inst. Metals. Vol. 27 (1986), p.525.

Google Scholar