Fabrication of Foam-Type Porous Silicon Carbide without Cracks and Hollow Struts

Article Preview

Abstract:

Foam-type porous silicon carbide (SiC) ceramics without cracks and hollow struts were fabricated using the polymer replica method with polycarbosilane (PCS) and polyurethane (PU) foam as the starting materials. The synthesized porous SiC was analyzed using X-ray diffraction and scanning electron microscopy. The results revealed that a porous SiC ceramic structure was formed with a dense framework at a low temperature of 1200°C. During the heat-treatment process, the PCS experienced an organic–inorganic transformation and then converted to the SiC ceramics. It was determined that the organic–inorganic transformation of PCS, which was the stage of silicon oxycarbide formation, is affected by the curing condition. In this study, the optimum curing condition was determined to be an air atmosphere at 200°C for 7 h.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

48-52

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] P. Colombo, Science, Vol. 322 (2008), p.381.

Google Scholar

[2] A. Zampieri, H. Sieber, T. Selvan, G. T. P. Mabande, W. Schwieger, F. Scheffler, M. scheffler and P. Greil, Adv. Mater., Vol. 17 (2005), p.344.

DOI: 10.1002/adma.200400672

Google Scholar

[3] P. Colombo, Philos. Trans. R. Soc. London, Ser. A, Vol. 364 (2006), p.109.

Google Scholar

[4] X. Zhu, D. Jiang and S. Tan, Mater. Sci. Eng., A, Vol. 323 (2002), p.232.

Google Scholar

[5] H.X. Peng, Z. Fan, J.R.G. Evans, and J.J.C. Busfield, J. Eur. Ceram. Soc., Vol. 20 (2000), p.807.

Google Scholar

[6] M. Fukushima, Y. Zhou, H. Miyazaki, Y. Yoshizawa and K. Hirao, J. Am. Ceram. Soc., Vol. 89 (2006), p.1523.

Google Scholar

[7] R. Mouazer, S. Mullens, I. Thijs, J. Luyten and A. Buekenhoudt, Adv. Eng. Mater., Vol. 7(2005), p.1124.

DOI: 10.1002/adem.200500163

Google Scholar

[8] X. Yao, Y. Yang, X. Liu and Z. Huang, J. Eur. Ceram. Soc., Vol. 33 (2013), p.2909.

Google Scholar

[9] M.R. Nangrejo and M.J. Edirisinghe, J. Porous Mater., Vol. 9 (2002), p.131.

Google Scholar

[10] F. Chen, Y. Yang, Q. Shen and L. Zhang, Ceram. Int., Vol. 38 (2012), p.5223.

Google Scholar

[11] A. R. Studart, Urs T. Gonzenbach, E. Tervoort and L. J. Gauckler, J. Am. Ceram. Soc., Vol. 89 (2006), p.1771.

Google Scholar

[12] J. H. Eom, Y. W. Kim and S. Raju, J. As. Ceram. Soc., Vol. 1 (2013), p.220.

Google Scholar

[13] S. Deville, Adv. Eng. Mater., Vol. 10 (2007), p.155.

Google Scholar

[14] P. Colombo, G. Mera, R. Riedeland and G. D. Sorarù, J. Am. Ceram. Soc., Vol. 93 (2010), p.1805.

Google Scholar

[15] J.J. Kim, J.H. Lee, Y.J. Lee, W.T. Kwon, S.R. Kim, D.J. Choi, H. Kim and Y. Kim, J. Kor. Ceram. Soc., Vol. 48 (2011), p.499.

Google Scholar

[16] Y. J. Lee, S.R. Kim, Y. Kim, D.G. Shin, J.Y. Won and W.T. Kwon, J. Kor. Ceram. Soc., Vol. 51 (2014), p.1.

Google Scholar

[17] R. A. Andrievski, Rev. Adv. Mater. Sci., Vol. 22 (2009), p.1.

Google Scholar

[18] M. Narisawa, Rev. Mater., Vol. 3 (2010), pp.3518-3536.

Google Scholar