On the Consistency of the Darken Method with the Onsager Representation for Diffusion in Multicomponent Systems

Article Preview

Abstract:

A consistency between the Darken method and the Onsager representation for cross diffusion in multicomponent system is shown. The justification is made by defining new sets of forces and fluxes linearly interrelated by a symmetric matrix of phenomenological coefficients. For the first time, the system of the components having various molar volumes is treated in this way. It is shown that the transformation leaves the entropy production unchanged. As an example, the entropy production for interdiffusion in the ternary Co-Fe-Ni diffusion couple is calculated and compared with mixing entropy.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-58

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A.D. Smigelskas, E.O. Kirkendall: Trans. AIME, Vol. 171 (1947), p.130.

Google Scholar

[2] L. S. Darken: Trans. AIME, Vol. 174 (1948), p.184.

Google Scholar

[3] J.B. Brady: Am. J. Sci., Vol. 275 (1975), p.954.

Google Scholar

[4] L. Onsager: Phys. Rev. Vol. 37 (1931) p.405.

Google Scholar

[5] L. Onsager: Phys. Rev. Vol. 38 (1931) 2265.

Google Scholar

[6] D. Kondepudi, I. Prigogine: Modern thermodynamics. From heat engines to dissipative structures (John Wiley&Sons, New York, 1998).

DOI: 10.1002/9781118698723

Google Scholar

[7] S.R. de Groot, Thermodynamics of Irreversible Processes (North-Holland, Amsterdam 1951).

Google Scholar

[8] H. B. Casimir: Rev. Modern Phys. Vol. 17 (1945) p.343.

Google Scholar

[9] B. D. Coleman and C. T. Truesdell: J. Chem. Phys. Vol. 3 (1960) p.28.

Google Scholar

[10] R. W. Balluffi, S. M. Allen and W. C. Carter: Kinetics of Materials (John Wiley & Sons Inc., Hoboken 2005).

Google Scholar

[11] G. J. Hooyman and S. R. de Groot: Physica Vol. 21 (1955) p.73.

Google Scholar

[12] J. Meixner: Ann. Physik Vol. 43 (1943) p.244.

Google Scholar

[13] B. Bożek. M. Danielewski, K. Tkacz-Śmiech, M. Zajusz: Mater. Sci. Tech. (2015) DOI: http: /dx. doi. org/10. 1179/1743284715Y. 0000000077.

Google Scholar

[13] L. Sapa: Z. Anal. Anwend. Vol. 32 (2013) p.313.

Google Scholar

[14] L. Sapa: Opuscula Math. Vol. 32 (2012) p.529.

Google Scholar

[15] M. Danielewski, B. Wierzba and K. Tkacz-Śmiech: Diffusion Foundations Vol. 1 (2014) p.31.

Google Scholar