[1]
H. Nakajima, The Discovery and Acceptance of the Kirkendall Effect: The Result of a Short Research Career, JOM, 49 (6) (1997), pp.15-19.
DOI: 10.1007/bf02914706
Google Scholar
[2]
A.D. Smigelskas and E.O. Kirkendall, Zinc Diffusion in Alpha Brass, Trans. AIME, 171 (1947), pp.130-142.
Google Scholar
[3]
H.B. Huntington and F. Seitz, Mechanism for self-diffusion in metallic copper, Phys. Rev., 61 (1942), pp.315-325.
DOI: 10.1103/physrev.61.315
Google Scholar
[4]
L.S. Darken, Diffusion, mobility and their interrelation through free energy in binary metallic systems, Trans. AIME 175 (1948) 184.
DOI: 10.1007/s11663-010-9344-x
Google Scholar
[5]
F. Seitz, On the theory of vacancy diffusion in alloys, Phys. Rev. 74 (1948) 1513.
Google Scholar
[6]
J. Bardeen, Diffusion in binary alloys, Phys. Rev. 76 (1949) 1403.
Google Scholar
[7]
Y.A. Geguzin, M.A. Krivoglaz, Motion of Macroscopic Inclusions in Solids, Nauka, 1979. 215 (in russian).
Google Scholar
[8]
D.L. Beke, Z. Erdélyi, I.A. Szabó, Nonlinear stress effects in diffusion, Defect Diffus. Forum 264 (2007) 117.
DOI: 10.4028/www.scientific.net/ddf.264.117
Google Scholar
[9]
G.B. Stephenson, Deformation during interdiffusion, Acta Metall. Mater. 36 (1988) 2663.
Google Scholar
[10]
I. Daruka, I.A. Szabó, D.L. Beke, C. Cserháti, A.A. Kodentsov, F.J.J. van Loo, Diffusioninduced bending of thin sheet couples: theory and experiments in Ti–Zr system, Acta Mater. 44 (1996) 4981.
DOI: 10.1016/s1359-6454(96)00099-7
Google Scholar
[11]
A.M. Gusak, T.V. Zaporozhets, K.N. Tu, U. Gösele, Kinetic analysis of the instability of hollow nanoparticles, Philos. Mag. 85 (36) (2005) 4445.
DOI: 10.1080/14786430500311741
Google Scholar
[12]
G.E. Murch, A.V. Evteev, E.V. Levtheko, I.V. Belova, Recent progress in the simulation of diffusion associated with hollow and Bi-metallic nanoparticles, Diff. Fundam. 42 (2009) 1.
Google Scholar
[13]
C. Cserháti, G. Glodán, D.L. Beke, Hollow hemisphere formation by pure Kirkendall porosity, Diff. Foundam. 1 (2014) 61.
DOI: 10.4028/www.scientific.net/df.1.61
Google Scholar
[14]
P.G. Shewmon, Diffusion in Solids, McGraw-Hill Book Company, USA, (1963).
Google Scholar
[15]
J. Philibert, Atom Movements, Diffusion and Mass Transport in Solids, Les Editions de Physique, Les Ulis, France, (1991).
Google Scholar
[16]
R.A. Swalin, Thermodynamics of Solids, John Wiley & Sons, Inc., New York, (1972).
Google Scholar
[17]
J. Svoboda, F. Fischer, P. Fratzl, Diffusion in multi-component systems with no or dense sources and sinks for vacancies, Acta Mater. 50 (2002) 1369.
DOI: 10.1016/s1359-6454(01)00443-8
Google Scholar
[18]
J. Svoboda, F. Fischer, P. Fratzl, Diffusion and creep in multi-component alloys with non-ideal sources and sinks for vacancies, Acta Mater. 54 (2006) 3043.
DOI: 10.1016/j.actamat.2006.02.041
Google Scholar
[19]
T. Heumann, G. Walther, Der Kirklendall-Effekt in Silber-Gold-Legirungen im gesamtem Konzentrtionsbereich, Z. Metallkd. 48 (1957) 151.
Google Scholar
[20]
M.J.H. van Dal, M.C.L.P. Pleumeekers, A.A. Kodentsov, F.J.J. van Loo, Intrinsic diffusion and Kirkendall effect in Ni–Pd and Fe–Pd solid solutions, Acta Mater. 48 (2000) 385.
DOI: 10.1016/s1359-6454(99)00375-4
Google Scholar
[21]
J.F. Cornet, D. Calais, Etude de effect Kirkendall dapres les equations de Darken, J. Phys. Chem. Solids 33 (1972) 1675.
DOI: 10.1016/s0022-3697(72)80463-3
Google Scholar
[22]
J.F. Cornet, Complements a letude de leffect Kirkendall selon les equations de Darken, J. Phys. Chem. Solids 35 (1974) 1247.
DOI: 10.1016/s0022-3697(74)80148-4
Google Scholar
[23]
F.J.J. van Loo, G.F. Bastin, G.D. Rieck, Marker displacements as a result of diffusion in binary metal systems, Sci. Sinter. 11 (1979) 9.
Google Scholar
[24]
J. Tomán, C. Cserháti, Y. Iguchi, Zs. Jánosfalvi, Z. Erdélyi, Investigation of the role of vacancy sources and sinks on the Kirkendall-effect on the nanoscale, Thin Solid Films, Available online 8 May (2015).
DOI: 10.1016/j.tsf.2015.04.089
Google Scholar
[25]
Z. Erdélyi, G. Schmitz, Reactive diffusion and stress in spherical geometry, Acta Mater. 60 (2012) 1807.
Google Scholar
[26]
Z. Balogh, Z. Erdélyi, D.L. Beke, G.A. Langer, A. Csik, H.G. Boyen, U. Wiedwald, P. Ziemann, A. Portavoce, C. Girardeaux, Applied Physics Letters, 92, 143104 (2008).
DOI: 10.1063/1.2908220
Google Scholar
[27]
Z. Balogh, Z. Erdélyi, D.L. Beke, U. Wiedwald, H. Pfeiffer, A. Tschetschetkin, P. Ziemann, Dissolution kinetics of Si into Ge (111) substrate on the nanoscale, Thin Solid Films, Volume 519, Issue 2, 1 November 2010, Pages 952-955, ISSN 0040-6090.
DOI: 10.1016/j.tsf.2010.08.146
Google Scholar
[28]
C. Cserháti, Z. Balogh, A. Csik, G.A. Langer, Z. Erdélyi, Gy. Glodán, G.L. Katona, D.L. Beke, I. Zizak, N. Darowski, E. Dudzik, R. Feyerherm, Linear growth kinetics of nanometric silicides in Co/amorphous-Si and Co/CoSi/amorphous-Si thin films, Journal of Applied Physics, 104, 024311 (2008).
DOI: 10.1063/1.2957071
Google Scholar
[29]
B. Parditka, M. Verezhak, Z. Balogh, A. Csik, G.A. Langer, D.L. Beke, M. Ibrahim, G. Schmitz, Z. Erdélyi, Phase growth in an amorphous Si–Cu system, as shown by a combination of SNMS, XPS, XRD and APT techniques, Acta Materialia, Volume 61, Issue 19, November 2013, Pages 7173-7179.
DOI: 10.1016/j.actamat.2013.08.021
Google Scholar
[30]
Z. Balogh, M.R. Chellali, G. -H. Greiwe, G. Schmitz, Z. Erdélyi, Interface sharpening in miscible Ni/Cu multilayers studied by atom probe tomography, Applied Physics Letters, 99, 181902 (2011).
DOI: 10.1063/1.3658390
Google Scholar