Investigating Kirkendall Effect in Thin Films

Article Preview

Abstract:

In binary systems Kirkendall shift is a well-known phenomenon. We investigated nanoscale diffusion in the framework of a recently published continuum model [Erdélyi and Schmitz, Acta. Mater. 60 (2012) 1807]. In thin films the usual vacancy creation and annihilation mechanisms, leading to the Kirkendall shift on larger scales, cannot operate in the same way. On this length-scale the characteristic distances between vacancy sinks and sources can be comparable to the dimension of the sample, causing differences in the development of the Kirkendall effect. Our group recently reported results in simulating nanoscale Kirkendall shift. In present work we show how using conventional method for velocity reconstruction used in multifoil experiments can be misleading if the distribution of vacancy sinks and sources is not uniform.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

36-41

Citation:

Online since:

July 2016

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. Nakajima, The Discovery and Acceptance of the Kirkendall Effect: The Result of a Short Research Career, JOM, 49 (6) (1997), pp.15-19.

DOI: 10.1007/bf02914706

Google Scholar

[2] A.D. Smigelskas and E.O. Kirkendall, Zinc Diffusion in Alpha Brass, Trans. AIME, 171 (1947), pp.130-142.

Google Scholar

[3] H.B. Huntington and F. Seitz, Mechanism for self-diffusion in metallic copper, Phys. Rev., 61 (1942), pp.315-325.

DOI: 10.1103/physrev.61.315

Google Scholar

[4] L.S. Darken, Diffusion, mobility and their interrelation through free energy in binary metallic systems, Trans. AIME 175 (1948) 184.

DOI: 10.1007/s11663-010-9344-x

Google Scholar

[5] F. Seitz, On the theory of vacancy diffusion in alloys, Phys. Rev. 74 (1948) 1513.

Google Scholar

[6] J. Bardeen, Diffusion in binary alloys, Phys. Rev. 76 (1949) 1403.

Google Scholar

[7] Y.A. Geguzin, M.A. Krivoglaz, Motion of Macroscopic Inclusions in Solids, Nauka, 1979. 215 (in russian).

Google Scholar

[8] D.L. Beke, Z. Erdélyi, I.A. Szabó, Nonlinear stress effects in diffusion, Defect Diffus. Forum 264 (2007) 117.

DOI: 10.4028/www.scientific.net/ddf.264.117

Google Scholar

[9] G.B. Stephenson, Deformation during interdiffusion, Acta Metall. Mater. 36 (1988) 2663.

Google Scholar

[10] I. Daruka, I.A. Szabó, D.L. Beke, C. Cserháti, A.A. Kodentsov, F.J.J. van Loo, Diffusioninduced bending of thin sheet couples: theory and experiments in Ti–Zr system, Acta Mater. 44 (1996) 4981.

DOI: 10.1016/s1359-6454(96)00099-7

Google Scholar

[11] A.M. Gusak, T.V. Zaporozhets, K.N. Tu, U. Gösele, Kinetic analysis of the instability of hollow nanoparticles, Philos. Mag. 85 (36) (2005) 4445.

DOI: 10.1080/14786430500311741

Google Scholar

[12] G.E. Murch, A.V. Evteev, E.V. Levtheko, I.V. Belova, Recent progress in the simulation of diffusion associated with hollow and Bi-metallic nanoparticles, Diff. Fundam. 42 (2009) 1.

Google Scholar

[13] C. Cserháti, G. Glodán, D.L. Beke, Hollow hemisphere formation by pure Kirkendall porosity, Diff. Foundam. 1 (2014) 61.

DOI: 10.4028/www.scientific.net/df.1.61

Google Scholar

[14] P.G. Shewmon, Diffusion in Solids, McGraw-Hill Book Company, USA, (1963).

Google Scholar

[15] J. Philibert, Atom Movements, Diffusion and Mass Transport in Solids, Les Editions de Physique, Les Ulis, France, (1991).

Google Scholar

[16] R.A. Swalin, Thermodynamics of Solids, John Wiley & Sons, Inc., New York, (1972).

Google Scholar

[17] J. Svoboda, F. Fischer, P. Fratzl, Diffusion in multi-component systems with no or dense sources and sinks for vacancies, Acta Mater. 50 (2002) 1369.

DOI: 10.1016/s1359-6454(01)00443-8

Google Scholar

[18] J. Svoboda, F. Fischer, P. Fratzl, Diffusion and creep in multi-component alloys with non-ideal sources and sinks for vacancies, Acta Mater. 54 (2006) 3043.

DOI: 10.1016/j.actamat.2006.02.041

Google Scholar

[19] T. Heumann, G. Walther, Der Kirklendall-Effekt in Silber-Gold-Legirungen im gesamtem Konzentrtionsbereich, Z. Metallkd. 48 (1957) 151.

Google Scholar

[20] M.J.H. van Dal, M.C.L.P. Pleumeekers, A.A. Kodentsov, F.J.J. van Loo, Intrinsic diffusion and Kirkendall effect in Ni–Pd and Fe–Pd solid solutions, Acta Mater. 48 (2000) 385.

DOI: 10.1016/s1359-6454(99)00375-4

Google Scholar

[21] J.F. Cornet, D. Calais, Etude de effect Kirkendall dapres les equations de Darken, J. Phys. Chem. Solids 33 (1972) 1675.

DOI: 10.1016/s0022-3697(72)80463-3

Google Scholar

[22] J.F. Cornet, Complements a letude de leffect Kirkendall selon les equations de Darken, J. Phys. Chem. Solids 35 (1974) 1247.

DOI: 10.1016/s0022-3697(74)80148-4

Google Scholar

[23] F.J.J. van Loo, G.F. Bastin, G.D. Rieck, Marker displacements as a result of diffusion in binary metal systems, Sci. Sinter. 11 (1979) 9.

Google Scholar

[24] J. Tomán, C. Cserháti, Y. Iguchi, Zs. Jánosfalvi, Z. Erdélyi, Investigation of the role of vacancy sources and sinks on the Kirkendall-effect on the nanoscale, Thin Solid Films, Available online 8 May (2015).

DOI: 10.1016/j.tsf.2015.04.089

Google Scholar

[25] Z. Erdélyi, G. Schmitz, Reactive diffusion and stress in spherical geometry, Acta Mater. 60 (2012) 1807.

Google Scholar

[26] Z. Balogh, Z. Erdélyi, D.L. Beke, G.A. Langer, A. Csik, H.G. Boyen, U. Wiedwald, P. Ziemann, A. Portavoce, C. Girardeaux, Applied Physics Letters, 92, 143104 (2008).

DOI: 10.1063/1.2908220

Google Scholar

[27] Z. Balogh, Z. Erdélyi, D.L. Beke, U. Wiedwald, H. Pfeiffer, A. Tschetschetkin, P. Ziemann, Dissolution kinetics of Si into Ge (111) substrate on the nanoscale, Thin Solid Films, Volume 519, Issue 2, 1 November 2010, Pages 952-955, ISSN 0040-6090.

DOI: 10.1016/j.tsf.2010.08.146

Google Scholar

[28] C. Cserháti, Z. Balogh, A. Csik, G.A. Langer, Z. Erdélyi, Gy. Glodán, G.L. Katona, D.L. Beke, I. Zizak, N. Darowski, E. Dudzik, R. Feyerherm, Linear growth kinetics of nanometric silicides in Co/amorphous-Si and Co/CoSi/amorphous-Si thin films, Journal of Applied Physics, 104, 024311 (2008).

DOI: 10.1063/1.2957071

Google Scholar

[29] B. Parditka, M. Verezhak, Z. Balogh, A. Csik, G.A. Langer, D.L. Beke, M. Ibrahim, G. Schmitz, Z. Erdélyi, Phase growth in an amorphous Si–Cu system, as shown by a combination of SNMS, XPS, XRD and APT techniques, Acta Materialia, Volume 61, Issue 19, November 2013, Pages 7173-7179.

DOI: 10.1016/j.actamat.2013.08.021

Google Scholar

[30] Z. Balogh, M.R. Chellali, G. -H. Greiwe, G. Schmitz, Z. Erdélyi, Interface sharpening in miscible Ni/Cu multilayers studied by atom probe tomography, Applied Physics Letters, 99, 181902 (2011).

DOI: 10.1063/1.3658390

Google Scholar