Nb-H Thin Films: On Phase Transformation Kinetics

Article Preview

Abstract:

It was recently shown that phases forming in thin films undergo a coherency state change depending on the film thickness. For Nb-H thin films, the coherency state was reported to change at about 38 nm. In this study the impact of the coherency state on the phase transformation kinetics is investigated for Nb films of two different film thicknesses (25 nm and 80 nm), below and above the state change thickness. The phase transformation in thin metal-hydrogen films can be studied by surface topography analyses via scanning tunneling microscopy (STM) because of the strong local lattice expansion of the hydride precipitates. STM on Nb-H reveals fast phase transformation kinetics for the 25 nm Nb-film, and much slower kinetics for the 80 nm film. This is suggested to be related to the change in the coherency between the Nb-matrix and the hydride precipitates.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

160-165

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Pundt, R. Kirchheim, Annu. Rev. Mater. Res. 36 (2006) 555.

Google Scholar

[2] U. Laudahn, A. Pundt, M. Bicker, U. v. Hülsen, U. Geyer, T. Wagner, R. Kirchheim, J. Alloys Comp. 293 (1999) 490.

DOI: 10.1016/s0925-8388(99)00471-5

Google Scholar

[3] H. Zabel, A. Weidinger, Comm. Condens. Mater. Phys. 17 (1995) 239.

Google Scholar

[4] G. Andersson, B. Hjörvarsson, P. Isberg, Phys. Rev. B 55 (1997) 1774.

Google Scholar

[5] Song G.; Geitz, M.; Abromeit, A.; Zabel, H. Phys. Rev. B 1996, 54, 14093.

Google Scholar

[6] K. Nörthemann, A. Pundt, Phys. Rev. B 78 (2008) 014105.

Google Scholar

[7] S. Wagner, A. Pundt, International Journal of Hydrogen Energy 41 (2016) 2727.

Google Scholar

[8] B. Hjörvarsson, G. Andersson, E. Karlsson, J. Alloys Comp. 253–254 (1997) 51.

Google Scholar

[9] R. Gremaud, C.P. Broederz, D.M. Borsa, A. Borgschulte, P. Mauron, H. Schreuders, J.H. Rector, B. Dam, R. Griessen, Adv. Mater. 19 (2007) 2813.

DOI: 10.1002/adma.200602560

Google Scholar

[10] Y. Fukai, The Metal-Hydrogen system, Springer Series in Material Science 21, Springer-Verlag, Berlin, Heidelberg, 1993, pp.104-133.

Google Scholar

[11] H. Peisl, Lattice strains due to hydrogen in metals, in: G. Alefeld, J. Völkl (Eds. ), Hydrogen in metals I, Springer-Verlag, Berlin, Heidelberg, 1978, pp.53-73.

DOI: 10.1007/3540087052_42

Google Scholar

[12] M. Hamm, V. Burlaka, S. Wagner, A. Pundt, Appl. Phys. Lett. 106 (2015) 243108.

Google Scholar

[13] V. Burlaka, S. Wagner, M. Hamm, A. Pundt, manuscript submitted (2016).

Google Scholar

[14] K. Nörthemann, R. Kirchheim, A. Pundt, J. Alloys. Comp. 356 (2003) 541.

Google Scholar

[15] K. Nörthemann, A. Pundt , Phys. Rev. B 83 (2011) 155420.

Google Scholar

[16] V. Burlaka, S. Wagner, A. Pundt J. Alloy Comp. 645 (2015) 388.

Google Scholar

[17] V. Burlaka, doctoral thesis, Göttingen (2016).

Google Scholar

[18] Zh. Qi, J. Völkl, R. Lässer, H. Wenzl, J. Phys. F 13 (1983) 1053.

Google Scholar

[19] J. Crank, in: The Mathematics of Diffusion, 2nd Edition, Press, Oxford, (1975).

Google Scholar

[20] R.I. Masel, Principles of Adsorption and Reaction on Solid Surfaces, Wiley, New York (1996).

Google Scholar

[21] H.T. Uchida, S. Wagner, M. Hamm, J. Kürschner, R. Kirchheim, B. Hjörvarsson, A. Pundt, Acta Materialia 85 (2015) 279.

DOI: 10.1016/j.actamat.2014.11.031

Google Scholar

[22] J. W. Christian. The Theory of Transformations in Metals and Alloys. Perganom Press, (1965).

Google Scholar