Nitrogen Diffusion and Stresses during Expanded Austenite Formation in Nitriding

Article Preview

Abstract:

Low-temperature nitriding of austenitic stainless steels or chromium containing alloys can produce expanded austenite, known as S-phase, with combined improvement in wear and corrosion resistance. In the paper a critical review of various models for nitrogen diffusion during nitriding is presented. A special attention is paid to the expanded austenite growth. A new model based on bi-velocity method and including stresses is presented. Basic equations and boundary conditions are discussed. Composition dependent nitrogen diffusion coefficient is assumed. Numerical solutions are obtained for the growth of the S-phase layer in steel. The results are compared with previous experiment and calculations.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

49-58

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. Pye: Practical nitriding and ferritic nitrocarburizing (ASM Int'l, Ohio, 2003).

Google Scholar

[2] M. Somers: Heat Treatment of Metals Vol. 27 (2000), p.92.

Google Scholar

[3] Y. Sun: J. Mat. Proc. Tech. Vol. 168 (2005) p.189.

Google Scholar

[4] G.M. Michal, F. Ernst, H. Kahn, Y. Cao, F. Oba, N. Agarwal and A.H. Heter: Acta Materialia Vol 54 (2006), p.1597.

DOI: 10.1016/j.actamat.2005.11.029

Google Scholar

[5] N. Mingolo, A.P. Tschiptschin, C.E. Pinedo: Surf. Coat. Tech. Vol. 201 (2006), p.4215.

Google Scholar

[6] E. Menthe, K. -T. Rie: Surf. Coat. Tech. Vol. 116-119 (1999), p.199.

Google Scholar

[7] S. Picard, J.B. Memet, R. Sabot: Mat. Sci. Eng. A Vol. 303 (2001), p.163.

Google Scholar

[8] J. Pavlossoglu: Härterei Tech. Mitt. Vol. 34 (1979), p.14.

Google Scholar

[9] J. Montevecchi: Härterei Tech. Mitt. Vol. 35 (1980), p.117.

Google Scholar

[10] K. Bongartz, D.F. Lupton and H. Schuster: Metall. Trans. A, Vol. 11 (1980), p.1883.

Google Scholar

[11] K. Bongartz, R. Schulten, W.J. Quadakkers and H. Nickel : Corrosion, Vol. 42 (1986), p.390.

Google Scholar

[12] K. Bongartz, K., W.J. Quadakkers, W.J., R. Schulten, R. and H. Nickel: Metall. Trans. A Vol. 20 (1989), p.1021.

Google Scholar

[13] J.E. Morral, B.M. Dupen and C.C. Law: Metall. Trans. A, Vol. 23 (1992), p. (2069).

Google Scholar

[14] A. Engström, L. Höglund and J. Ågren: Mat. Sci. Forum, Vol. 163-165 (1994), p.725.

Google Scholar

[15] S. Parascandola and W. Möller: Appl. Phys. Lett. Vol. 76 (2000), p.2194.

Google Scholar

[16] G. Abrasonis, J.P. Rivière, C. Templier, L. Pranevičius and N.P. Barradas: J. Appl. Phys. Vol. 97 (2005), p.124906.

Google Scholar

[17] A. Martinavičius, G. Abrasonis, W. Möller, C. Templier, J.P. Rivière, A. Declémy and Y. Chumlyakov: J. Appl. Phys. Vol. 105 (2009), p.093502.

DOI: 10.1063/1.3120912

Google Scholar

[18] A. Galdikas, A. Petraitiene: Mat. Sci. (Medziagotyra) Vol. 20 (2014), p.25.

Google Scholar

[19] T. Maskalioviene, A. Galdikas, J.P. Riviere and L. Pichon: surf. Coat. Tech. Vol. 205 (2011), p.3301.

Google Scholar

[20] M. Hillert and J. Ågren: Scripta Mater. Vol. 50 (2004), p.697.

Google Scholar

[21] M. Hillert and J. Ågren: Scripta Mater. Vol. 52 (2005), p.87.

Google Scholar

[22] Y. Sun and T. Bell: Mat. Sci. and Eng. A Vol. 224 (1997), p.33.

Google Scholar

[23] T.L. Christiansen, M.A.J. Somers: Int. J. Mat. Res. Vol. 99 (2008), p.999.

Google Scholar

[24] T. Bell: Key Eng. Mat. Vol. 373-374 (2008), p.289.

Google Scholar

[25] H. Dong: Int'l Mat. Rev. Vol. 55 (2010), p.65.

Google Scholar

[26] S. Mandl, B. Rauschenbach: J. Appl. Phys. Vol. 88 ( 2000), p.3323.

Google Scholar

[27] T.L. Christiansen and M.A.J. Somers: Int. J. Mat. Res. Vol. 99 (2008), p.999.

Google Scholar

[28] T. Christiansen, K.V. Dahl and M.A.J. Somers: Defect and Diff. Forum, Vol. 258–260 (2006) 378.

Google Scholar

[29] Y.T. Sun, T. Bell, Z. Kolosvary and J. Flis, in Stainless steel 2000. Thermochemical surface engineering of stainless steel edited by T. Bell and K. Akamatsu, (The Institute of Materials, London 2001), p.65.

DOI: 10.1201/9780367814151-8

Google Scholar

[30] D.L. Williamson, O. Ozturk, R. Wei, and P.J. Wilbur: Surf. Coat. Technol. Vol. 65 (1994), p.15.

Google Scholar

[31] T. Christiansen and M.A.J. Somers: Z. Metallkd. Vol. 97 (2006), p.79.

Google Scholar

[32] S. Mandl and B. Rauschenbach: J. Appl. Phys. Vol. 91 (2002), p.9737.

Google Scholar

[33] T. Christiansen and M.A.J. Somers: J. Phase Equilib. Diff. Vol. 26 (2005), p.520.

Google Scholar

[34] T. Christiansen, K. V. Dahl and M. A. J. Somers: Mater. Sci. Technol. Vol. 24 (2008), p.159.

Google Scholar

[35] A. Galdikas and T. Moskalioviene: Comp. Mat. Sci. Vol. 50 (2010), p.796.

Google Scholar

[36] A. Galdikas and T. Moskalioviene: Surf. Coat. Tech Vol. 205 (2011), p.3742.

Google Scholar

[37] A. Galdikas, T. Moskalioviene, J.P. Rivière and L. Pichon: Surf. Coat. Tech. Vol. 205 (2011), p.3301.

Google Scholar

[38] T. Moskalioviene and A. Galdikas: Mat. Sci. (Medziagotyra) Vol. 17 (2011), p.11.

Google Scholar

[39] E.J. Mittemeijer: Harterei Tech. Mitt Vol. 36 (1981), p.57.

Google Scholar

[40] O. Richmond, W.C. Leslie and H.A. Wriedt: Trans. ASM Vol. 57 (1964), p.294.

Google Scholar

[41] T. Christiansen and M.A.J. Somers: Mat. Sc. Eng. A Vol. 424 (2006), p.181.

Google Scholar

[42] A. Petraitiene, A. Galdikas and T. Moskalioviene: Mat. Sci. (Medziagotyra) Vol. 21 (2015), p.23.

Google Scholar

[43] R. Delhez, Th.H. de Keijser, E.J. Mittemeijer, B.J. Thijsse, M.A. Hollanders, O.B. Loopstra and W.G. Sloof : Aust. J. Phys. Vol. 41 (1988), p.261.

DOI: 10.1071/ph880261

Google Scholar

[44] T. Tromas, J.C. Stinville, C. Templier and P. Villechaise: Acta Mater. Vol. 60 (2012), p. (1965).

Google Scholar

[45] S. Jegou, T.L. Christiansen, M. Klaus, Ch. Genzel and M.A.J. Somers: Thin Solid Films Vol. 530 (2013), p.71.

DOI: 10.1016/j.tsf.2012.06.029

Google Scholar

[46] K. Holly and M. Danielewski: Phys Rev B Vol. 50 (1994), p.13336.

Google Scholar

[47] G.B. Stephenson: Acta Metall. Mater. Vol. 36 (1988), p.2663.

Google Scholar

[48] M. Danielewski, K. Holly and W. Krzyżański: Com. Meth. in Mat. Sci. Vol. 8 (2008), p.31.

Google Scholar

[49] M. Danielewski and B. Wierzba: Acta Mater. Vol. 58 (2010), p.6717.

Google Scholar

[50] M. Danielewski and B. Wierzba: Physica A Vol. 387 (2008), p.745.

Google Scholar

[51] M. Danielewski, M. Zajusz, B. Bożek, K. Tkacz-Śmiech: Deffect and Diff. Forum Vol. 369 (2016), p.53.

DOI: 10.4028/www.scientific.net/ddf.369.77

Google Scholar

[52] B. Bożek, M. Danielewski, K. Tkacz-Śmiech, M. Zajusz: Mat. Sci. Tech. Vol. 31 (2015) 1633.

DOI: 10.1179/1743284715y.0000000077

Google Scholar

[53] B. Baranowski: Adv. Thermod. Vol. 6 (1992), p.168.

Google Scholar

[54] J. Crank: The mathematics of diffusion, (2nd edition, Clarendon Press, Oxford, 1979), p.47.

Google Scholar

[55] H.J. Grabke: Phys. Chem. Vol. 72 (1968), p.533.

Google Scholar

[56] T.L. Christiansen and M.A.J. Somers: Int. J. Mat. Res. Vol. 100 (2009), p.10.

Google Scholar