Phase Behaviour of Cellulose Nanocrystal Dispersion in Aqueous Sulphuric Acid and Development of an Energy Efficient Separation Technique for the Acid-Cellulose Nanocrystal System

Article Preview

Abstract:

In this paper, the phase behaviour of a cellulose nanocrystal (CNCs) dispersion in sulphuric acid solutions was investigated, aimed at the development of an energy efficient separation method for this mixture. The system in consideration was a mixture of 30 wt% aqueous sulphuric acid (ρl = 1219 kg/m3) containing 12.6 mg/ml of cellulose nanocrystals (CNCs) (ρs = 1590 kg/m3, volume fraction of CNCs less than 1%). This volume filling mixture was obtained directly from a CNC extraction process, as obtained after the hydrolysis of cotton using 64 wt% sulphuric acid at ca. 45 ̊C for 45 minutes (this condition was required for the extraction of CNCs from cotton) followed by quenching the hydrolysis with water. The CNCs form the desired product and need to be separated from the acid that can then be recycled. Conventionally this separation has been difficult and requires a large input of energy. This work addresses this problem by investigating into the phase behaviour and physicochemical and hydrodynamic character of this mixture. This understanding led to the development of a very energy efficient separation mechanism for this mixture, which is 5 orders of magnitude more energy efficient than the most widely used centrifugation systems.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

59-72

Citation:

Online since:

February 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

[1] M. Samir; F. Alloin; A. Dufresne: Biomacromolecules, 6, (2005), 612-626.

Google Scholar

[2] S. J. Eichhorn; A. Dufresne; M. Aranguren; N. E. Marcovich; J. R. Capadona; S. J. Rowan; C. Weder; W. Thielemans; M. Roman; S. Renneckar; W. Gindl; S. Veigel; J. Keckes; H. Yano; K. Abe; M. Nogi; A. N. Nakagaito; A. Mangalam; J. Simonsen; A. S. Benight; A. Bismarck; L. A. Berglund; T. Peijs: J. Mater. Sci., 45, (2010).

DOI: 10.1007/s10853-009-3874-0

Google Scholar

[3] S. Kalia; A. Dufresne; B. M. Cherian; B. S. Kaith; L. Averous; J. Njuguna; E. Nassiopoulos: Int. J. Polym. Sci., (2011).

Google Scholar

[4] A. B. Elmabrouk; T. Wim; A. Dufresne; S. Boufi: J. Appl. Polym. Sci., 114, (2009), 2946-2955.

DOI: 10.1002/app.30886

Google Scholar

[5] M. Labet; W. Thielemans: Cellulose, 18, (2011), 607-617.

Google Scholar

[6] N. L. G. de Rodriguez; W. Thielemans; A. Dufresne: Cellulose, 13, (2006), 261-270.

Google Scholar

[7] G. Morandi; L. Heath; W. Thielemans: Langmuir, 25, (2009), 8280-8286.

Google Scholar

[8] A. P. Mathew; W. Thielemans; A. Dufresne: J. Appl. Polym. Sci., 109, (2008), 4065-4074.

Google Scholar

[9] J. R. Capadona; K. Shanmuganathan; S. Triftschuh; S. Seidel; S. J. Rowan; C. Weder: Biomacromolecules, 10, (2009), 712-716.

DOI: 10.1021/bm8010903

Google Scholar

[10] Q. J. Wu; M. Henriksson; X. Liu; L. A. Berglund: Biomacromolecules, 8, (2007), 3687-3692.

Google Scholar

[11] L. Heath; W. Thielemans: Green Chem., 12, (2010), 1448-1453.

Google Scholar

[12] W. Thielemans; C. R. Warbey; D. A. Walsh: Green Chem., 11, (2009), 531-537.

Google Scholar

[13] H. Ma; C. Burger; B. S. Hsiao; B. Chu: Biomacromolecules, 13, (2012), 180-186.

Google Scholar

[14] Y. Habibi; A. L. Goffin; N. Schiltz; E. Duquesne; P. Dubois; A. Dufresne: J. Mater. Chem., 18, (2008), 5002-5010.

Google Scholar

[15] D. Klemm; B. Heublein; H. -P. Fink; A. Bohn: Angew. Chem., Int. Ed., 44, (2005), 3358-3393.

DOI: 10.1002/anie.200460587

Google Scholar

[16] M. J. Bonne; K. J. Edler; J. G. Buchanan; D. Wolverson; E. Psillakis; M. Helton; W. Thielemans; F. Marken: J. Phys. Chem. C, 112, (2008), 2660-2666.

DOI: 10.1021/jp709783k

Google Scholar

[17] M. J. Bonne; E. Galbraith; T. D. James; M. J. Wasbrough; K. J. Edler; A. T. A. Jenkins; M. Helton; A. McKee; W. Thielemans; E. Psillakis; F. Marken: J. Mater. Chem., 20, (2010), 588-594.

DOI: 10.1039/b918308f

Google Scholar

[18] S. Eyley; W. Thielemans: Chem. Commun., 47, (2011), 4177-4179.

Google Scholar

[19] L. J. Nielsen; S. Eyley; W. Thielemans; J. W. Aylott: Chem. Commun., 46, (2010), 8929-8931.

Google Scholar

[20] S. Y. Liew; W. Thielemans; D. A. Walsh: J. Phys. Chem. C, 114, (2010), 17926-17933.

Google Scholar

[21] S. Y. Liew; D. A. Walsh; W. Thielemans: Rsc Advances, 3, (2013), 9158-9162.

Google Scholar

[22] S. Liew; W. Thielemans; D. Walsh: J. Solid State Electrochem., (2014), 1-9.

Google Scholar

[23] X. Wu; J. Tang; Y. Duan; A. Yu; R. M. Berry; K. C. Tam: J. Mater. Chem. A, 2, (2014), 19268-19274.

Google Scholar

[24] X. Wu; V. L. Chabot; B. K. Kim; A. Yu; R. M. Berry; K. C. Tam: Electrochim. Acta, 138, (2014), 139-147.

Google Scholar

[25] S. Elazzouzi-Hafraoui; Y. Nishiyama; J. L. Putaux; L. Heux; F. Dubreuil; C. Rochas: Biomacromolecules, 9, (2008), 57-65.

DOI: 10.1021/bm700769p

Google Scholar

[26] S. Beck-Candanedo; M. Roman; D. G. Gray: Biomacromolecules, 6, (2005), 1048-1054.

Google Scholar

[27] X. M. Dong; T. Kimura; J. F. Revol; D. G. Gray: Langmuir, 12, (1996), 2076-(2082).

Google Scholar

[28] D. Bondeson; A. Mathew; K. Oksman: Cellulose, 13, (2006), 171-180.

Google Scholar

[29] R. Dash; Y. Li; A. J. Ragauskas: Carbohydr. Polym., 88, (2012), 789-792.

Google Scholar

[30] S. Y. Liew; W. Thielemans; B. Hewakandamby: Journal of Nano Research, 38, (2016), 58-72.

Google Scholar

[31] P. A. Buining; A. P. Philipse; H. N. W. Lekkerkerker: Langmuir, 10, (1994), 2106-2114.

Google Scholar

[32] J. F. Revol; H. Bradford; J. Giasson; R. H. Marchessault; D. G. Gray: Int. J. Biol. Macromol., 14, (1992), 170-172.

Google Scholar

[33] M. J. Sparnaay: Recueil des Travaux Chimiques des Pays-Bas, 78, (1959), 680-709.

DOI: 10.1002/recl.19590780908

Google Scholar

[34] L. Bergström; S. Stemme; T. Dahlfors; H. Arwin; L. Ödberg: Cellulose, 6, (1999), 1-13.

DOI: 10.1023/a:1009250111253

Google Scholar

[35] I. Kalashnikova; H. Bizot; B. Cathala; I. Capron: Langmuir, 27, (2011), 7471-7479.

DOI: 10.1021/la200971f

Google Scholar

[36] I. Kalashnikova; H. Bizot; B. Cathala; I. Capron: Biomacromolecules, 13, (2012), 267-275.

DOI: 10.1021/bm201599j

Google Scholar

[37] R. F. Probstein Physicochemical Hydrodynamics An introduction Second Edition; John Wiley & Sons, Inc.: New Jersey, (2003).

Google Scholar

[38] M. Holz; S. R. Heil; A. Sacco: Phys. Chem. Chem. Phys., 2, (2000), 4740-4742.

Google Scholar