Numerical Simulation of Fire in a Gasoline Storage Tank in Reduced-Scale

Article Preview

Abstract:

With the increasing demand for energy and fuels in Brazil, the storage of liquid fuels in multiple tanks is becoming much more usual, posing challenges from the point of view of fire safety. To study this type of phenomenon and to evaluate its possible causes, detecting failures such as ones in design and erection of storage systems or in detection and protection equipment, numerical simulations are performed based on real data. This work presents numerical simulations of a small-scale tank for gasoline storage, based on an experimental study reported in literature. The present research shows results related to temperature in the region adjacent to the tank on fire, fuel mass burning rate, heat release rate and average flame height. Comparisons are made between numerical and experimental results, as well as with available literature results for similar conditions. In addition to gasoline type C (which has anhydrous ethanol in its composition), also gasoline type A (anhydrous ethanol free) is considered. The results obtained for simulations with gasoline type A presented better agreement with literature data than those for gasoline type C, the differences being due to the variable composition of the type C fuel. For example, the reported fuel mass burning rate for gasoline in literature is 0.045 kg/(m2∙s), while the present simulations provided values of 0.038 kg/(m2∙s) for type C and 0.047 kg/(m2∙s) for type A.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

11-20

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Mariani, L.M., Simulação de Incêndio Utilizando a Ferramenta Computacional Fire Dynamics Simulator: Teste de Hipótese de Incêndio Ocorrido em Samambaia-DF, Trabalho de Conclusão de Curso (Especialização em Perícia de Incêndio e Produção de Provas Judiciais), Curso de Especialização em Perícia de Incêndio e Produção de Provas Judiciais, Universitário Euroamericano (UNIEURO), Brasília, (2009).

DOI: 10.11606/d.18.2018.tde-27082018-123952

Google Scholar

[2] Kletz, T.A., What Went Wrong: Case Histories of Process Plant Disasters, 4. ed., Gulf Publishing Company, Massachusetts, (1999).

DOI: 10.1080/00908318708945522

Google Scholar

[3] Fontenelle, F.M. A, Análise Térmica em Estruturas de Tanques de Armazenamento de Etanol em Situação de Incêndio, Dissertação (Mestrado em Engenharia Civil), Programa de Pós-graduação em Engenharia Civil, Universidade Federal do Rio de Janeiro (UFRJ), Rio de Janeiro, (2012).

DOI: 10.52547/rbmb.10.2.314

Google Scholar

[4] Leite, R.M., Rodrigues, E.E.C., Centeno, F.R., Estudo experimental de incêndio em tanques de armazenamento de gasolina comum em escala reduzida, 3º Congresso Ibero-Latino-Americano sobre Segurança Contra Incêndio (CILASCI), Porto Alegre, RS, Brasil, (2015).

DOI: 10.24840/978-972-752-272-9_0341-0351

Google Scholar

[5] Stephen B. Pope, Turbulent Flows, Cambridge University Press, (2000).

Google Scholar

[6] Ryder, N. L., Sutula, J. A., Schemel, C. F., Hamer, A. J., Brunt, V. V., Consequence modeling using the fire dynamics simulator, Journal of Hazardous Materials 115 (2004) 149-154.

DOI: 10.1016/j.jhazmat.2004.06.018

Google Scholar

[7] McGrattan, K., Hostikka, S., Floyd, J., Baum, H., Rehm, R., Fire Dynamics Simulator (Version 5) Technical Reference Guide. NIST Special Publication 1018-5, (2007).

DOI: 10.6028/nist.sp.1018-5

Google Scholar

[8] Patankar, S.V., Numerical heat transfer and fluid flow, Hemisphere, New York, (1980).

Google Scholar

[9] Versteeg, H.K., Malalasekera, W., An introduction of computational fluid dynamics: the finite volume method, 2nd ed., Prentice Hall, USA, (2007).

Google Scholar

[10] Deardorff, J. W., Numerical Investigation of Neutral and Unstable Planetary Boundary Layers, Journal of Atmospheric Sciences 29 (1972) 91–115.

DOI: 10.1175/1520-0469(1972)029<0091:nionau>2.0.co;2

Google Scholar

[11] Petróleo Brasileiro S.A., Gasolina Comum Tipo C: Certificado de Ensaio, no: 4225550-15 R, Canoas, (2015).

Google Scholar

[12] Petróleo Brasileiro S.A., Gasolina Comum Tipo C: Ficha de Informação de Segurança de Produto Químico – FISPQ, no: Pb0031_p, Rio de Janeiro, (2015).

Google Scholar

[13] Petróleo Brasileiro S.A., Gasolina Comum Tipo A: Ficha de Informação de Segurança de Produto Químico – FISPQ, no: Pb0029_p, Rio de Janeiro, (2014).

Google Scholar

[14] Stroup, D., Lindeman, A., Verification and validation of selected fire models for nuclear power plant applications. NUREG-1824, supplement 1, United States Nuclear Regulatory Commission, Washington, DC, (2013).

Google Scholar

[15] Babrauskas, V., Heat Release Rates in Fires, 1. ed. E&FN Spon: Londres, (1992).

Google Scholar

[16] Zukoski, E., Cetegen, B., Kubota, T., Visible Structure of Buoyant Diffusion Flames, 20th Symposium International on Combustion, The Combustion Institute, Pennsylvania, (1984).

DOI: 10.1016/s0082-0784(85)80522-1

Google Scholar

[17] Thomas, P.H., The Size of Flames from Natural Fires, 9th Symposium International on Combustion, The Combustion Institute, Pennsylvania, (1962).

Google Scholar

[18] Heskestad, G., Fire Plumes, Fire Height, and Air Entrainment. Seção 2, Capítulo 1, SFPE Handbook of Fire Protection Engineering, 3 ed. National Fire Protection Association: Quincy, Massachusetts, (2002).

DOI: 10.1007/978-1-4939-2565-0_13

Google Scholar