On the Design of Two EAHE Assemblies with Four Ducts

Article Preview

Abstract:

This article applies the constructal design method to analyze how to improve the thermal performance of earth-air heat exchangers (EAHE) composed by four ducts. The paper evaluates two types of arrangements for which the centers of the ducts take the shape of rectangles and diamonds. Under volumetric constraints, the vertical Sv and horizontal Sh spacings between the ducts are left free to vary. The objective is to maximize the magnitude of the EAHE instantaneous thermal potential P which is an average of the differences between the temperatures at the ducts outlets and inlets at any instant of time. The temperature fields are computed through numerical simulations, adopting a verified and validated three-dimensional model. Among the results, this work shows how the design can raise by 11% the annual thermal efficiency of the EAHE.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-39

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] C.P. Jacovides, G. Mihalakakou, M. Santamouris and J.O. Lewis, On the ground temperature profile for passive cooling applications in buildings. Sol. Energy 57 (1996) 167-175.

DOI: 10.1016/s0038-092x(96)00072-2

Google Scholar

[2] C. Peretti, A. Zarrella, M. Carli and R. Zecchin, The design and environmental evaluation of earth-to-air heat exchangers (EAHE). A literature review. Renew. Sustain. Energy Rev. 28 (2013) 107-116.

DOI: 10.1016/j.rser.2013.07.057

Google Scholar

[3] L.T. Rodrigues and M. Gillott, A novel low-carbon space conditioning system incorporating phase-change materials and earth–air heat exchangers. Int. J. Low-Carbon Tech. 10 (2015) 176-187.

DOI: 10.1093/ijlct/ctt023

Google Scholar

[4] J. Sobti and S.K. Singh, Earth-air heat exchanger as a green retrofit for Chandīgarh - a critical review. Geotherm. Energy (2015) 3: 14 DOI 10. 1186/s40517-015-0034-4.

DOI: 10.1186/s40517-015-0034-4

Google Scholar

[5] P. Hollmuller and B. Lachal, Cooling and preheating with buried pipe systems: monitoring, simulation and economic aspects. Energy Build. 33 (2001) 509-518.

DOI: 10.1016/s0378-7788(00)00105-5

Google Scholar

[6] J. Pfafferott, Evaluation of earth-to-air heat exchangers with a standardised method to calculate energy efficiency. Energy Build. 35 (2003) 971-983.

DOI: 10.1016/s0378-7788(03)00055-0

Google Scholar

[7] J. Vaz, M. Sattler, R.S. Brum, E.D. Santos and L.A. Isoldi, An experimental study on the use of earth-air heat exchangers (eahe). Energy Build. 72 (2014) 122-131.

DOI: 10.1016/j.enbuild.2013.12.009

Google Scholar

[8] R.S. Brum, L.A.O. Rocha, J. Vaz, E.D. Santos and L.A. Isoldi, Development of simplified numerical model for evaluation of the influence of soil-air heat exchanger installation depth over its thermal potential. Int. J. Adv. Renew. Energy Res. 1 (2012).

Google Scholar

[9] G. Mihalakakou, M. Santamouris and D. Asimakopoulos, Modelling the thermal performance of earth-to-air heat exchangers. Sol. Energy 53 (1994) 301-305.

DOI: 10.1016/0038-092x(94)90636-x

Google Scholar

[10] M. Paepe and A. Janssens, Thermo-hydraulic design of earth-air heat exchangers. Energy Build. 35 (2003) 389-397.

DOI: 10.1016/s0378-7788(02)00113-5

Google Scholar

[11] H. Wu, S. Wang and D. Zhu, Modelling and evaluation of cooling capacity of earth-air-pipe systems. Energy Convers. Manage. 48 (2007) 1462-1471.

DOI: 10.1016/j.enconman.2006.12.021

Google Scholar

[12] R.S. Brum, J.V.A. Ramalho, L. A. O. Rocha, L. A. Isoldi and E. D. dos Santos, Transient Models to Analyze the Influence of the Air Velocity and Ducts Diameter on the Performance of Earth-Air Heat Exchangers. Int. J. Fluid Mech. Res. 43 (2016).

DOI: 10.1615/interjfluidmechres.v43.i5-6.100

Google Scholar

[13] F. Ascione, L. Bellia and F. Minichiello, Earth-to-air heat exchangers for Italian climates. Renew. Energy 36 (2011) 2177-2188.

DOI: 10.1016/j.renene.2011.01.013

Google Scholar

[14] V. Bansal, R. Misra, G.D. Agrawal and J. Mathur, Performance analysis of earth-pipe-air heat exchanger for winter heating. Energy Build. 41 (2009) 1151-1154.

DOI: 10.1016/j.enbuild.2009.05.010

Google Scholar

[15] V. Bansal, R. Misra, G.D. Agrawal and J. Mathur, Performance analysis of earth-pipe-air heat exchanger for summer cooling. Energy Build. 42 (2010) 645-648.

DOI: 10.1016/j.enbuild.2009.11.001

Google Scholar

[16] R.S. Brum, J. Vaz, L.A.O. Rocha, E.D. Santos and L.A. Isoldi, A new computational modeling to predict behavior of earth-air heat exchangers. Energy Build. 64 (2013) 395–402.

DOI: 10.1016/j.enbuild.2013.05.032

Google Scholar

[17] A. Bejan and S. Lorente, Design with Constructal Theory, John Wiley & Sons, Hoboken, (2008).

Google Scholar

[18] M.K. Rodrigues, R.S. Brum, J. Vaz, L.A.O. Rocha, E.D. Santos and L.A. Isoldi, Numerical investigation about the improvement of the thermal potential of an earth-air heat exchanger (eahe) employing the constructal design method. Renew. Energy 80 (2015).

DOI: 10.1016/j.renene.2015.02.041

Google Scholar

[19] H. Kobayashi, S. Lorente, R. Anderson and A Bejan, Serpentine thermal coupling between a stream and a conducting body. J. Appl. Phys. 111 (2012) 044911.

DOI: 10.1063/1.3689152

Google Scholar

[20] M. R. Errera, S. Lorente, A. Bejan, Assemblies of heat pumps served by a single underground heat exchanger. Int. J. Heat Mass Transfer 75 (2014) 327-336.

DOI: 10.1016/j.ijheatmasstransfer.2014.03.039

Google Scholar

[21] L.A.O. Rocha, S. Lorente, A. Bejan and R. Anderson, Constructal design of underground heat sources or sinks for the annual cycle. Int. J. Heat Mass Transfer 55 (2012) 7832-7837.

DOI: 10.1016/j.ijheatmasstransfer.2012.08.010

Google Scholar

[22] F.P. Incropera, D.P. Dewitt, T.L. Bergman and A.S. Lavine, Fundamentals of Heat and Mass Transfer, John Wiley & Sons, Hoboken, (2007).

Google Scholar

[23] H.K. Versteeg and W. Malalasekera, An Introduction to Computational Fluid Dynamics – The Finite Volume Method, Pearson Education, London, (2007).

Google Scholar

[24] D.C. Wilcox, Turbulence Modeling for CFD, DCW Industries, Califórnia, (2006).

Google Scholar

[25] R.S. Brum, J.V.A. Ramalho, L.A.O. Rocha, L.A. Isoldi and E.D. Santos, A matlab code to fit periodic data. Revista Brasileira de Computação Aplicada 7 (2015) 16-25.

DOI: 10.5335/rbca.2015.4618

Google Scholar

[26] F.M. White, Fluid Mechanics, McGraw-Hill, New York, (2011).

Google Scholar

[27] J.H. Lienhard IV and J.H. Lienhard V, A heat transfer textbook, Phlogiston Press, Massachussets, (2003).

Google Scholar

[28] H.S. Lee, Thermal design: heat sinks, thermoelectrics, heat pipes, compact heat exchangers, and solar cells, John Wiley & Sons, Hoboken, (2010).

DOI: 10.1002/9780470949979.ch5

Google Scholar