Mathematical Modeling and Numerical Simulation of Atmospheric Pollutant Dispersion

Article Preview

Abstract:

This work presents a mathematical modeling and numerical solution of dispersion of pollutants in the atmosphere. The equations of conservation of mass, amount of movement, energy and a chemical species are solved by the Finite Volume Method in Cartesian coordinates and the turbulence closure is based on the Reynolds averages (RANS models), using the model k-ε for the determination of the fields of velocity, temperature and, in a specific case, concentration of pollutant. The numerical results are compared with data from the classic Prairie Grass experiment, showing excellent agreement.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

180-187

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.R. Hanna, O.R. Hansen, S. Dharmavaram, FLACS CFD air quality model performance evaluation with Kit Fox, MUST, Prairie Grass, and EMU observations, Atmospheric Environment 38 (2004) 4675-4687.

DOI: 10.1016/j.atmosenv.2004.05.041

Google Scholar

[2] S.R. Hanna, O.R. Hansen, M. Ichard, D. Strimaitis, CFD model simulation of dispersion from chlorine railcar releases in industrial and urban areas, Atmospheric Environment 43 (2009) 262-270.

DOI: 10.1016/j.atmosenv.2008.09.081

Google Scholar

[3] M.Y. Tsai, K.S. Chen, Measurements and three-dimensional modeling of air pollutant dispersion in an Urban Street Canyon, Atmospheric Environment 38 (2004) 5911-5924.

DOI: 10.1016/j.atmosenv.2004.07.008

Google Scholar

[4] E. Demael, B. Carissimo, Comparative Evaluation of an Eulerian CFD and Gaussian Plume Models Based on Prairie Grass Dispersion Experiment, Journal of Applied Meteorology and Climatology 47 (2008) 888-900.

DOI: 10.1175/2007jamc1375.1

Google Scholar

[5] A. Mazzoldi, T. Hill, J.J. Colls, CFD and Gaussian atmospheric dispersion models: A comparison for leak from carbon dioxide transportation and storage facilities, Atmospheric Environment 42 (2008) 8046-8054.

DOI: 10.1016/j.atmosenv.2008.06.038

Google Scholar

[6] M. Pontiggia, M. Derudi, M. Alba, M. Scaioni, R. Rota, Hazardous gas releases in urban areas: Assessment of consequences through CFD modelling, Journal of Hazardous Materials 176 (2009) 589-596.

DOI: 10.1016/j.jhazmat.2009.11.070

Google Scholar

[7] S.M. Tauseef, D. Rashtchian, S.A. Abbasi, CFD-based simulation of dense gas dispersion in presence of obstacles, Journal of Loss Prevention in the Process Industries 24 (2011) 371-376.

DOI: 10.1016/j.jlp.2011.01.014

Google Scholar

[8] B. Liu, X. Liu, C. Lu, A. Godbole, G. Michal, A.K. Tieu, Computational fluid dynamics simulation of carbon dioxide dispersion in a complex environment, Journal of Loss Prevention in the Process Industries 40 (2016) 419-432.

DOI: 10.1016/j.jlp.2016.01.017

Google Scholar

[9] N.L. Barad, Project Prairie Grass: A Field Program in Diffusion. Geophysical Research Papers, v. I, n. 59, Air Force Cambridge Research Center, USA, 1958a.

Google Scholar

[10] N.L. Barad, Project Prairie Grass: A Field Program in Diffusion. Geophysical Research Papers, v. II, n. 59, Air Force Cambridge Research Center, USA, 1958b.

Google Scholar

[11] F.A. Record, H.E. Cramer, Preliminary Analysis of Project Prairie Grass Diffusion Measurements, Journal of the Air Pollution Control Association, 8 (1958) 240- 248.

DOI: 10.1080/00966665.1958.10467851

Google Scholar

[12] D.A. Haugen, Project Prairie Grass: A Field Program in Diffusion. Geophysical Research Papers, v. III, n. 59, Air Force Cambridge Research Center, USA, (1959).

Google Scholar

[13] R.B. Stull, An Introduction to Boundary Layer Meteorology, Kluwer Academic Publishers, Boston, (1988).

Google Scholar

[14] J.C. Carvalho, M.T., Vilhena, D.M., Moreira, Comparison between Eulerian and Lagrangian semi-analytical models to simulate the pollutant dispersion in the PBL, Applied Mathematical Modelling 31(2005) 120-129.

DOI: 10.1016/j.apm.2005.08.009

Google Scholar

[15] P. Kumar, M. Sharan, Parametrization of the eddy diffusivity in a dispersion model over homogeneous terrain in the atmospheric boundary layer, Atmospheric Research 106 (2011) 30-43.

DOI: 10.1016/j.atmosres.2011.10.020

Google Scholar

[16] D.M. Moreira, A.C. Moraes, A. Goulart, T.T.A. Albuquerque, A contribution to solve the atmospheric diffusion equation with eddy diffusivity depending on source distance, Atmospheric Environment 83 (2013) 254-259.

DOI: 10.1016/j.atmosenv.2013.10.045

Google Scholar