Thermal Environment and Inclination Angle Dependencies on the Surface Quality of Selective Laser Melted 316L Steel

Article Preview

Abstract:

Additive manufacturing processes offer the ability to manufacture highly complex geometries, but are limited in terms of the achievable surface quality. These limitations are based on physical restrictions, especially the need of support and the powder-bed environment, and economic decisions. In this study, the development of the morphology of surfaces with varying inclination angles was investigated on the example of 316L stainless steel. Surfaces with low inclination angles to the manufacturing plane suffered extensively from the process related staircase effect, whereas perpendicular side faces revealed high dependencies on the interaction with the powder-bed.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

202-207

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] L. Hitzler, A. Charles, A. Öchsner, The Influence of Post-Heat-Treatments on the Tensile Strength and Surface Hardness of Selective Laser Melted AlSi10Mg. Defect and Diffusion Forum 370 (2016) 171-176.

DOI: 10.4028/www.scientific.net/ddf.370.171

Google Scholar

[2] M.J. Matthews, G. Guss, S.A. Khairallah, A.M. Rubenchik, P.J. Depond, W.E. King, Denudation of metal powder layers in laser powder bed fusion processes. Acta Mater 114 (2016) 33-42.

DOI: 10.1016/j.actamat.2016.05.017

Google Scholar

[3] M.R. Alkahari, T. Furumoto, T. Ueda, A. Hosokawa, Consolidation characteristics of ferrous-based metal powder in additive manufacturing. Journal of Advanced Mechanical Design, Systems, and Manufacturing 8 (2014) JAMDSM0009.

DOI: 10.1299/jamdsm.2014jamdsm0009

Google Scholar

[4] L. Hitzler, C. Janousch, J. Schanz, M. Merkel, F. Mack, A. Öchsner, Non-destructive evaluation of AlSi10Mg prismatic samples generated by Selective Laser Melting: Influence of manufacturing conditions. Mat-wiss u Werkstofftech 47 (2016) 564-581.

DOI: 10.1002/mawe.201600532

Google Scholar

[5] L. Hitzler, J. Hirsch, M. Merkel, W. Hall, A. Öchsner, Position dependent surface quality in Selective Laser Melting. Mat-wiss u Werkstofftech IN PRESS (2017).

DOI: 10.1002/mawe.201600742

Google Scholar

[6] G. Strano, L. Hao, R.M. Everson, K.E. Evans, Surface roughness analysis, modelling and prediction in selective laser melting. J Mater Process Technol 213 (2013) 589-597.

DOI: 10.1016/j.jmatprotec.2012.11.011

Google Scholar

[7] L. Löber, C. Flache, R. Petters, U. Kühn, J. Eckert, Comparison of different post processing technologies for SLM generated 316l steel parts. Rapid Prototyping J 19 (2013) 173-179.

DOI: 10.1108/13552541311312166

Google Scholar

[8] J.P. Kruth, M. Badrossamay, E. Yasa, J. Deckers, L. Thijs, J. Van Humbeeck (2010).

Google Scholar

[9] B. Vandenbroucke, J.P. Kruth, Selective laser melting of biocompatible metals for rapid manufacturing of medical parts. Rapid Prototyping J 13 (2007) 196-203.

DOI: 10.1108/13552540710776142

Google Scholar

[10] J. Schanz, M. Hofele, L. Hitzler, M. Merkel, H. Riegel Laser polishing of additive manufactured AlSi10Mg parts with an oscillating laser beam. In: Machining, Joining and Modifications of Advanced Materials. Springer, Singapore, 2016, pp.159-169.

DOI: 10.1007/978-981-10-1082-8_16

Google Scholar

[11] L. Hitzler, C. Janousch, J. Schanz, M. Merkel, B. Heine, F. Mack, W. Hall, A. Öchsner, Direction and location dependency of selective laser melted AlSi10Mg specimens. J Mater Process Technol 242 (2017) 48-61.

DOI: 10.1016/j.jmatprotec.2016.11.029

Google Scholar

[12] L. Hitzler, J. Hirsch, J. Schanz, B. Heine, M. Merkel, W. Hall, A. Öchsner, Fracture toughness of selective laser melted AlSi10Mg. P I Mech Eng L: J Mat IN PRESS (2017).

DOI: 10.1177/1464420716687337

Google Scholar

[13] A. Öchsner, Continuum Damage and Fracture Mechanics. Springer, Singapur, (2016).

Google Scholar