Positron Annihilation and TEM Characterization of Cu-Enriched Clusters in the Ferritic Steels Containing Copper

Article Preview

Abstract:

Nanosized Cu-enriched clusters formed in Cu-containing reactor pressure vessel (RPV) steels during service have a deleterious effect on mechanical properties, which can result in RPV embrittlement and limit reactor operation life. To understand the effect of Cu-enriched clusters (CECs) behavior on mechanical properties, thermal aging at 370°C for times up to 13200 h was performed on the high-copper ferritic steels. The microstructure evolution of CECs was investigated by positron annihilation spectroscopy (PAS) and transmission electron microscope (TEM). The results show that the CECs formed after aging times up to 3000 h, which composition is composed of Fe, Cu, Ni, Mn, and Si, are 9R structures. The CECs lead to precipitation hardening/embrittlement effects. The changes of hardness have a linear relationship with transition temperature shifts.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

150-154

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] G.R. Odette, G.E. Lucas, Recent progress in understanding reactor pressure vessel steel embrittlement, Radiat. Eff. Defect. S 144 (1998) 189-231.

DOI: 10.1080/10420159808229676

Google Scholar

[2] W.J. Phythian, C.A. English, Microstructural evolution in reactor pressure vessel steels, J. Nucl. Mater. 205 (1993) 162-177.

DOI: 10.1016/0022-3115(93)90079-e

Google Scholar

[3] M.K. Miller, K.F. Russell, Embrittlement of RPV steels: An atom probe tomography perspective, J. Nucl. Mater. 371 (2007) 145-160.

DOI: 10.1016/j.jnucmat.2007.05.003

Google Scholar

[4] Y Nagai, Z Tang, M Hassegawa, T Kanai, M Saneyasu, Irradiation-induced Cu aggregations in Fe: An origin of embrittlement of reactor pressure vessel steels, Phys. Rev. B 63 (2001) 134110.

DOI: 10.1103/physrevb.63.134110

Google Scholar

[5] E. Meslin, M. Lambrecht, M. Hernandez-Mayoral, F. Bergner, L. Malerba, P. Pareige, B. Radiguet, A. Barbu, D. Gomez-Briceno, A. Ulbricht, A. Almazoui, Characterization of neutron-irradiated ferritic model alloys and a RPV steel from combined APT, SANS, TEM and PAS analyses, J. Nucl. Mater. 406 (2010).

DOI: 10.1016/j.jnucmat.2009.12.021

Google Scholar

[6] P.J. Othen, M.L. Jenkins, G.D.W. Smith, W.J. Phythian, Transmission electron microscope investigations of the structure of copper precipitates in thermally-aged Fe-Cu and Fe-Cu-Ni, Phil. Mag. Lett. 64 (1991) 383-391.

DOI: 10.1080/09500839108215121

Google Scholar

[7] P.D. Styman, J.M. Hyde, K. Wilford, A. Morley, G.D.W. Smith, Precipitation in long term thermally aged high copper, high nickel model RPV steel welds, Prog. Nucl. Energ. 57 (2012) 86-92.

DOI: 10.1016/j.pnucene.2011.10.010

Google Scholar

[8] Y. Nagai, K. Takadate, Z. Tang, H. Ohkubo, H. Sunaga, H. Takizawa, M. Hasegawa, Positron annihilation study of vacancy-solute complex evolution in Fe-based alloys, Phys. Rev. B 67 (2003) 224202.

DOI: 10.1103/physrevb.67.224202

Google Scholar

[9] M.J. Konstantinovic, G. Bonny, Thermal stability and the structure of vacancy-solute clusters in iron alloys, Acta Mater. 85 (2015) 107-111.

DOI: 10.1016/j.actamat.2014.11.026

Google Scholar

[10] L. Tan, J.T. Busby, Formulating the strength factor for improved predictability of radiation hardening, J. Nucl. Mater. 465 (2015) 724-730.

DOI: 10.1016/j.jnucmat.2015.07.009

Google Scholar

[11] G. Xu (Ph.D. thesis), The effect of thermal aging on the microstructure and impact property of RPV model steel, Shanghai University, 2012, p.89.

Google Scholar