Irradiation Induced Defects by Fe-Ion in 316L Stainless Steel Studied by Positron Annihilation Spectroscopy

Article Preview

Abstract:

Solution annealed type 316L austenitic stainless steels were irradiated using 2 MeV Fe ions at room temperature. The implanted fluences were 2×1012 ions/cm2 and 1×1013 ions/cm2, respectively. Variable mono-energetic positron beam was performed to characterize the evolution of microstructure and irradiation induced defects. Results show that large amount of vacancy defects formed after heavy ion irradiation. In which, some of mono-vacancies might migrate to form small-sized clusters at room temperature. After irradiation, implanted Fe atoms mainly be interstitials atoms, but some Fe atoms might recombine with vacancies due to their high mobility, which could decrease the defect concentration, effectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

155-161

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] D. K. Tappin, D. J. Bacon, C. A. English, et al. The Characterization of Displacement-Cascade Collapse in Ni-Cr-Fe Alloys, J. Nucl. Mater. 205 (1993) 92-97.

DOI: 10.1016/0022-3115(93)90075-a

Google Scholar

[2] A. Etienne, M. Hernandez-Mayoral, C. Genevois, et al. Dislocation loop evolution under ion irradiation in austenitic stainless steels, J. Nucl. Mater. 400 (2010) 56-63.

DOI: 10.1016/j.jnucmat.2010.02.009

Google Scholar

[3] H. F. Huang, J. J. Li, D. H. Li, et al. TEM, XRD and nanoindentation characterization of Xenon ion irradiation damage in austenitic stainless steels, J. Nucl. Mater. 454 (2014) 168-172.

DOI: 10.1016/j.jnucmat.2014.07.033

Google Scholar

[4] K. Vortler, N. Juslin, G. Bonny, et al. The effect of prolonged irradiation on defect production and ordering in Fe-Cr and Fe-Ni alloys, J Phys-Condens Mat. 23 (2011) 355007.

DOI: 10.1088/0953-8984/23/35/355007

Google Scholar

[5] S. J. Zinkle, N. M. Ghoniem Prospects for accelerated development of high performance structural materials, J. Nucl. Mater. 417 (2011) 2-8.

Google Scholar

[6] S. Y. Zhu, Y. N. Zheng, P. Ahmat, et al. Temperature and dose dependences of radiation damage in modified stainless steel, J. Nucl. Mater. 343 (2005) 325-329.

DOI: 10.1016/j.jnucmat.2004.11.020

Google Scholar

[7] A. P. Druzhkov, D. A. Perminov, A. E. Davletshin The effect of alloying elements on the vacancy defect evolution in electron-irradiated austenitic Fe-Ni alloys studied by positron annihilation, J. Nucl. Mater. 384 (2009) 56-60.

DOI: 10.1016/j.jnucmat.2008.10.002

Google Scholar

[8] Q. Xu, H. Watanabe, N. Yoshida Microstructural evolution in Fe-Cr-Ni alloy irradiated with Ni ion under varying temperature, J. Nucl. Mater. 233 (1996) 1057-1061.

DOI: 10.1016/s0022-3115(96)00118-3

Google Scholar

[9] A. D. Brailsford, R. Bullough Citation Classic - the Rate Theory of Swelling Due to Void Growth in Irradiated Metals, Cc/Eng Tech Appl Sci. (1982) 22-22.

Google Scholar

[10] T. Yoshiie, X. Z. Cao, K. Sato, et al. Point defect processes during incubation period of void growth in austenitic stainless steels, Ti-modified 316SS, J. Nucl. Mater. 417 (2011) 968-971.

DOI: 10.1016/j.jnucmat.2010.12.189

Google Scholar

[11] M. Eldrup, B. N. Singh Studies of defects and defect agglomerates by positron annihilation spectroscopy, J. Nucl. Mater. 251 (1997) 132-138.

DOI: 10.1016/s0022-3115(97)00221-3

Google Scholar

[12] M. Lambrecht, A. Almazouzi Positron annihilation study of neutron irradiated model alloys and of a reactor pressure vessel steel, J. Nucl. Mater. 385 (2009) 334-338.

DOI: 10.1016/j.jnucmat.2008.12.020

Google Scholar

[13] J. F. Ziegler, J. P. Biersack, U. Littmark The Stopping and Range of Ions in solids, Pergamon, New York, , (1985) http: /www. srim. org.

Google Scholar

[14] H. P. Zhu, Z. G. Wang, X. Gao, et al. Positron annihilation Doppler broadening spectroscopy study on Fe-ion irradiated NHS steel, Nucl Instrum Meth B. 344 (2015) 5-10.

Google Scholar

[15] E. Lu, X. Cao, S. Jin, et al. Investigation of vacancy-type defects in helium irradiated FeCrNi alloy by slow positron beam, J. Nucl. Mater. 458 (2015) 240-244.

DOI: 10.1016/j.jnucmat.2014.12.070

Google Scholar

[16] B. Y. Wang, Y. Y. Ma, P. Wang, et al. Development and application of the intense slow positron beam at IHEP, Chinese Phys C. 32 (2008) 156-159.

Google Scholar

[17] Y. Y. Ma, S. L. Pei, X. Z. Cao, et al. Design of a pulsing system for Beijing intense slow positron beam, High Energ Phys Nuc. 30 (2006) 166-170.

Google Scholar

[18] Q. Xu, K. Sato, X. Z. Cao, et al. Interaction of deuterium with vacancies induced by ion irradiation in W, Nucl. Instr. Meth. Phys. Res. B. 315 (2013) 146-148.

Google Scholar

[19] H. Huomo, A. Vehanen, M. Bentzon, et al. Positron diffusion in Mo: The role of epithermal positrons, Phys. Rev. B. 35 (1987) 8252-8255.

DOI: 10.1103/physrevb.35.8252

Google Scholar

[20] A. v. Veen, H. Schut, J. d. Vries, et al. Analysis of positron profiling data by means of 'VEPFIT', 218 (1991) 171-198.

DOI: 10.1063/1.40182

Google Scholar

[21] C. Dimitrov, M. Tenti, O. Dimitrov Resistivity Recovery in Austenitic Fe-Cr-Ni Alloys Neutron-Irradiated at 23-K, J Phys F Met Phys. 11 (1981) 753-765.

DOI: 10.1088/0305-4608/11/4/009

Google Scholar

[22] A. P. Druzhkov, D. A. Perminov, V. L. Arbuzov The effect of carbon on the evolution of vacancy defects in electron-irradiated nickel studied by positron annihilation, J. Nucl. Mater. 434 (2013) 198-202.

DOI: 10.1016/j.jnucmat.2012.11.044

Google Scholar