Positron Spectroscopy of Defects in Hydrogen-Saturated Zirconium

Article Preview

Abstract:

Zirconium alloys, such as Zr-1Nb are widely used as cladding materials for nuclear fuel elements of light water reactors. Hydrogen embrittlement problem causes degradation of these parts of nuclear reactors. It is known, that hydrogen uptake causes changes in microstructure and defect structure of metals. The aim of this work is study of Zr-1Nb alloys’ defect structure after hydrogen saturation up to the concentration of 600 ppm. Saturation of hydrogen was carried out from the gas phase under high temperature and pressure. This study reveals the increase of average positron lifetime with the increase of hydrogen concentration. Value of the average positron lifetime achieves plateau when the concentration of hydrogen is about 600 ppm. Also the following effects were detected in the material after hydrogen uptake up to different concentrations: crystal lattice expansion, dislocations and vacancy-like defects formation, as well as the defect-hydrogen complexes formation.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

138-141

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] A. Zielinski, S. Sobieszczyk, International journal of hydrogen energy 36 (2011) 8961-8629.

Google Scholar

[2] M. B. Lewis, Deuterium-defect trapping in ion-irradiated zirconium, J. Nucl. Mater. 125 (1984) 152-159.

DOI: 10.1016/0022-3115(84)90542-7

Google Scholar

[3] Y. S. Bordulev, R. S. Laptev, V. N. Kudiyarov, A. M. Lider, Investigation of Commercially Pure Titanium Structure during Accumulation and Release of Hydrogen by Means of Positron Lifetime and Electrical Resitivity Measurements, Advanced Materials Research 880 (2014).

DOI: 10.4028/www.scientific.net/amr.880.93

Google Scholar

[4] R. Laptev, A. Lider, Yu. Bordulev, V. Kudiiarov, G. Garanin, Hydrogen-induced microstructure changes in titanium, J. Alloys Compd. 645 (2015) 193-195.

DOI: 10.1016/j.jallcom.2014.12.257

Google Scholar

[5] Y. Fukai, N. Okuma, Phys. Rev. Lett. 73 (1994) 1640–1643.

Google Scholar

[6] Y. Shirai, H. Araki, T. Mori, W. Nakamura, K. Sakaki, J. Alloys Compd. 330 (2002) 125-131.

Google Scholar

[7] J. Cizek, I. Prochazka, S. Danis, M. Cieslar, G. Brauer, W. Anwand, R. Kirchheim, A. Pundt, Journal of Alloys and Compounds. 446-447 (2007) 479-483.

DOI: 10.1016/j.jallcom.2006.11.105

Google Scholar

[8] J. Cizek, I. Prochazka, F. Becvar, R. Kuzel, M. Cieslar, G. Brauer, W. Anwand, R. Kirchheim, A. Pundt, Physical Review. B 69 224106 (2004).

Google Scholar

[9] R. S. Laptev, A. M. Lider, Y. S. Bordulev, V. N. Kudiyarov, G. V. Garanin, W. Wang, P. V. Kuznetsov, Investigation of Defects in Hydrogen-Saturated Titanium by Means of Positron Annihilation Techniques, Defect and Diffusion Forum 365 (2015).

DOI: 10.4028/www.scientific.net/ddf.365.232

Google Scholar

[10] R. S. Laptev, Y. S. Bordulev, V. N. Kudiyarov, A. M. Lider, G. V. Garanin, Positron Annihilation Spectroscopy of Defects in Commercially Pure Titanium Saturated with Hydrogen, Advanced Materials Research 880 (2014) 134-140.

DOI: 10.4028/www.scientific.net/amr.880.134

Google Scholar

[11] R. Krause-Rehberg, H.S. Leipner. Positron Annihilation in Semiconductors: Defect Studies, third ed., Berlin Heidelberg, New York (2003).

Google Scholar

[12] A. Dupasquier, A.P. Mills: Proceedings International School of Physics Enrico Fermi, Course, CXXV. (1995).

Google Scholar

[13] Y. Chen, X. Wan, F. Li et al., Materials Science and Engineering: A. 466 (2007) 156–159.

Google Scholar

[14] V.N. Kudiiarov, L.V. Gulidova, N.S. Pushilina, A.M. Lider, Advanced Materials Research 740 (2013) 690-693.

DOI: 10.4028/www.scientific.net/amr.740.690

Google Scholar

[15] A. A. Shmakov, The absorption of hydrogen by fuel claddings of light water reactors, Scientific session of MEPhI 13 (1999), 129-131.

Google Scholar

[16] A. S. Zaymovsiy, A. V. Nikulina, N. G. Reshetnikov, Zirconium alloys in nuclear power engineering, Energomizdat, Moscow, (1994).

Google Scholar

[17] A. A. Shmakov, E.A. Smirnov, H. Bruhertzoifer, Distribution and diffusion of hydrogen in the oxidized zirconium-based alloys, Atomic Energy (1998).

DOI: 10.1007/bf02359343

Google Scholar

[18] D. Giebel, J. Kansy, Materials Science Forum 666 (2010) 138-141.

Google Scholar

[19] I.K. MacKenzie, in: W. Brandt, A. Dupasquier (Eds. ), Positron Solid-State Physics, North Holland, Amsterdam, (1995).

Google Scholar

[20] G. J. Thomas, W. D. Drotning, Hydrogen Induced Lattice Expansion in Nickel, Metallurgical Transactions A 14A (1983) 1547.

Google Scholar

[21] R.A. Oriani, The Physical and Metallurgical Aspects of Hydrogen in Metals, in ICCF4, Fourth International Conference on Cold Fusion, (1993).

Google Scholar

[22] J. M. Campillo, F. Plazaola and N. Diego, J. Phys.: Condens. Matter 12 (2000) 9715.

Google Scholar

[23] H. E. Hansen, R. M. Nieminen, M.J. Puska, J. Phys. F 14 (1984) 1299 – 1316.

Google Scholar