[1]
B. C. Sales, D. Mandrus,R. K. Williams, Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials, Science 272 (1996) 1325-1328.
DOI: 10.1126/science.272.5266.1325
Google Scholar
[2]
R. Venkatasubramanian, E. Siivola, T. Colpitts,B. O'Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature 413 (2001) 597-602.
DOI: 10.1038/35098012
Google Scholar
[3]
G. Mahan, B. Sales, J. Sharp, Thermoelectric Materials: New Approaches to an Old Problem, Phys. Today 50 (1997) 42.
DOI: 10.1063/1.881752
Google Scholar
[4]
T. Caillat, J. P. Fleurial,A. Borshchevsky, Preparation and thermoelectric properties of semiconducting Zn4Sb3, J. Phys. Chem. Solids 58 (1997) 1119-1125.
DOI: 10.1016/s0022-3697(96)00228-4
Google Scholar
[5]
Eric S. Toberer, Protima Rauwel, Sylvain Gariel, J. Taftøb,G. Jeffrey Snyder, Composition and the thermoelectric performance of b-Zn4Sb3, J. Mater. Chem. 20 (2010) 9877.
DOI: 10.1039/c0jm02011g
Google Scholar
[6]
G. J. Snyder, M. Christensen, E. Nishibori, T. Caillat,B. B. Iversen, Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties, Nat. Mater. 3 (2004) 458-463.
DOI: 10.1038/nmat1154
Google Scholar
[7]
W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri,A. Majumdar, Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors, Phys. Rev. Lett. 96 (2006) 045901.
DOI: 10.1103/physrevlett.96.045901
Google Scholar
[8]
H. J. Kim, E. S. Božin, S. M. Haile, G. J. Snyder,S. J. L. Billinge, Nanoscale a-structural domains in the phonon-glass thermoelectric material b-Zn4Sb3, Phys. Rev. B 75 (2007) 134103.
Google Scholar
[9]
E. S. Toberer, K. A. Sasaki, C. R. I. Chisholm, S. M. Haile, W. A. Goddard III,G. J. Snyder, Local structure of interstitial Zn in β-Zn4Sb3, phys. stat. sol. (RRL) 1 (2007) 253.
DOI: 10.1002/pssr.200701168
Google Scholar
[10]
T. Zhang, K. Zhou,Z. Q. Chen, Defect structure of thermoelectric Zn4Sb3, Phys. Stat. Sol. B 252 (2015) 2179–2184.
DOI: 10.1002/pssb.201552079
Google Scholar
[11]
C. Stiewe, T. Dasgupta, L. Boettcher, B. Pedersen, E. Mueller B.B. Iversen, Thermoelectric Characterization of Zone-Melted and Quenched Zn4Sb3., J. Electron. Mater. 39 (2009) (1975).
DOI: 10.1007/s11664-009-1044-4
Google Scholar
[12]
Y. Mozharivskyj, Y. Janssen, J. L. Harringa, A. Kracher, A. O. Tsokol,G. J. Miller, Zn13Sb10: A Structural and Landau Theoretical Analysis of Its Phase Transitions, Chem. Mater. 18 (2006) 822.
DOI: 10.1002/chin.200615016
Google Scholar
[13]
B. L. Pedersen,B. B. Iversen, Thermally stable thermoelectric Zn4Sb3 by zone-melting synthesis, Appl. Phys. Lett. 92 (2008) 161907.
DOI: 10.1063/1.2916705
Google Scholar
[14]
B.B. Iversen, Fulfilling thermoelectric promises: b-Zn4Sb3 from materials research to power generation, J. Mater. Chem. 20 (2010) 10778-10787.
DOI: 10.1039/c0jm02000a
Google Scholar
[15]
D. Eklöf, A. Fischer, Y. Wu, E. -W. Scheidt, W. Scherer,U. Häussermann, Transport properties of the II–V semiconductor ZnSb, J. Mater. Chem. A 1 (2013) 1407.
DOI: 10.1039/c2ta00509c
Google Scholar
[16]
T. Torsti, T. Eirola, J. Enkovaara, T. Hakala, P. Havu, V. Havu, T. Hoynalanmaa, J. Ignatius, M. Lyly, I. Makkonen, T.T. Rantala, J. Ruokolainen, K. Ruotsalainen, E. Rasanen, H. Saarikoski M.J. Puska, Three real-space discretization techniques in electronic structure calcu-lations, Phys. Stat. Sol. B 243 (2006).
DOI: 10.1002/pssb.200541348
Google Scholar
[17]
T. Torsti, T. Eirola, J. Enkovaara, T. Hakala, P. Havu, V. Havu, T. Hoynalanmaa, J. Ignatius, M. Lyly, I. Makkonen, T.T. Rantala, J. Ruokolainen, K. Ruotsalainen, E. Rasanen, H. Saarikoski M.J. Puska, Three real-space discretization techniques in electronic structure calculations, Phys. Stat. Sol. B 243 (2006).
DOI: 10.1002/pssb.200541348
Google Scholar
[18]
M. J. Puska,R. M. Nieminen, Theory of positrons in solids and on solid surfaces, Rev. Mod. Phys. 66 (1994) 841-897.
DOI: 10.1103/revmodphys.66.841
Google Scholar
[19]
E. Boroński,R. M. Nieminen, Electron-positron density functional theory., Phys. Rev. B 34 (1986) 3820.
DOI: 10.1103/physrevb.34.3820
Google Scholar
[20]
I. Makkonen, M. Hakala,M. J. Puska, Modeling the momentum distributions of annihilating electron-positron pairs in solids, Phys. Rev. B 73 (2006) 035103.
DOI: 10.1103/physrevb.73.035103
Google Scholar
[21]
T. Zhang, K. Zhou, X. F. Li, Z. Q. Chen, X. L. Su, X. F. Tang, Reversible structural transition in spark plasma-sintered thermoelectric Zn4Sb3, J. Mater. Sci. (2015) 10. 1007/s10853-015-9514-y.
DOI: 10.1007/s10853-015-9514-y
Google Scholar
[22]
Y. Mozharivskyj, A. O. Pecharsky, S. Bud'ko,G. J. Miller, A Promising Thermoelectric Material: Zn4Sb3 or Zn6-dSb5. Its Composition, Structure, Stability, and Polymorphs. Structure and Stability of Zn1-dSb, Chem. Mater. 16 (2004) 1580-1589.
DOI: 10.1021/cm035274a
Google Scholar