Defect Characterization in Thermoelectric Zn-Sb Systems by Positron Annihilation

Article Preview

Abstract:

Positron lifetimes and momentum distributions of annihilating electron-positron pairs have been calculated for vacancies in ZnSb and Zn4Sb3. The calculated positron lifetimes for bulk ZnSb and Zn4Sb3 are 203 ps and 208 ps, and for VZn in ZnSb and Zn4Sb3 are 249 ps and 237 ps respectively. The calculated momentum distribution results indicate the VZn in both ZnSb and Zn4Sb3 has less characterization from elemental Zn. Using coincidence Doppler broadening spectra combined with lifetime measurements can reveal the vacancy structure in ZnSb and Zn4Sb3.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

245-248

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] B. C. Sales, D. Mandrus,R. K. Williams, Filled Skutterudite Antimonides: A New Class of Thermoelectric Materials, Science 272 (1996) 1325-1328.

DOI: 10.1126/science.272.5266.1325

Google Scholar

[2] R. Venkatasubramanian, E. Siivola, T. Colpitts,B. O'Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature 413 (2001) 597-602.

DOI: 10.1038/35098012

Google Scholar

[3] G. Mahan, B. Sales, J. Sharp, Thermoelectric Materials: New Approaches to an Old Problem, Phys. Today 50 (1997) 42.

DOI: 10.1063/1.881752

Google Scholar

[4] T. Caillat, J. P. Fleurial,A. Borshchevsky, Preparation and thermoelectric properties of semiconducting Zn4Sb3, J. Phys. Chem. Solids 58 (1997) 1119-1125.

DOI: 10.1016/s0022-3697(96)00228-4

Google Scholar

[5] Eric S. Toberer, Protima Rauwel, Sylvain Gariel, J. Taftøb,G. Jeffrey Snyder, Composition and the thermoelectric performance of b-Zn4Sb3, J. Mater. Chem. 20 (2010) 9877.

DOI: 10.1039/c0jm02011g

Google Scholar

[6] G. J. Snyder, M. Christensen, E. Nishibori, T. Caillat,B. B. Iversen, Disordered zinc in Zn4Sb3 with phonon-glass and electron-crystal thermoelectric properties, Nat. Mater. 3 (2004) 458-463.

DOI: 10.1038/nmat1154

Google Scholar

[7] W. Kim, J. Zide, A. Gossard, D. Klenov, S. Stemmer, A. Shakouri,A. Majumdar, Thermal Conductivity Reduction and Thermoelectric Figure of Merit Increase by Embedding Nanoparticles in Crystalline Semiconductors, Phys. Rev. Lett. 96 (2006) 045901.

DOI: 10.1103/physrevlett.96.045901

Google Scholar

[8] H. J. Kim, E. S. Božin, S. M. Haile, G. J. Snyder,S. J. L. Billinge, Nanoscale a-structural domains in the phonon-glass thermoelectric material b-Zn4Sb3, Phys. Rev. B 75 (2007) 134103.

Google Scholar

[9] E. S. Toberer, K. A. Sasaki, C. R. I. Chisholm, S. M. Haile, W. A. Goddard III,G. J. Snyder, Local structure of interstitial Zn in β-Zn4Sb3, phys. stat. sol. (RRL) 1 (2007) 253.

DOI: 10.1002/pssr.200701168

Google Scholar

[10] T. Zhang, K. Zhou,Z. Q. Chen, Defect structure of thermoelectric Zn4Sb3, Phys. Stat. Sol. B 252 (2015) 2179–2184.

DOI: 10.1002/pssb.201552079

Google Scholar

[11] C. Stiewe, T. Dasgupta, L. Boettcher, B. Pedersen, E. Mueller B.B. Iversen, Thermoelectric Characterization of Zone-Melted and Quenched Zn4Sb3., J. Electron. Mater. 39 (2009) (1975).

DOI: 10.1007/s11664-009-1044-4

Google Scholar

[12] Y. Mozharivskyj, Y. Janssen, J. L. Harringa, A. Kracher, A. O. Tsokol,G. J. Miller, Zn13Sb10: A Structural and Landau Theoretical Analysis of Its Phase Transitions, Chem. Mater. 18 (2006) 822.

DOI: 10.1002/chin.200615016

Google Scholar

[13] B. L. Pedersen,B. B. Iversen, Thermally stable thermoelectric Zn4Sb3 by zone-melting synthesis, Appl. Phys. Lett. 92 (2008) 161907.

DOI: 10.1063/1.2916705

Google Scholar

[14] B.B. Iversen, Fulfilling thermoelectric promises: b-Zn4Sb3 from materials research to power generation, J. Mater. Chem. 20 (2010) 10778-10787.

DOI: 10.1039/c0jm02000a

Google Scholar

[15] D. Eklöf, A. Fischer, Y. Wu, E. -W. Scheidt, W. Scherer,U. Häussermann, Transport properties of the II–V semiconductor ZnSb, J. Mater. Chem. A 1 (2013) 1407.

DOI: 10.1039/c2ta00509c

Google Scholar

[16] T. Torsti, T. Eirola, J. Enkovaara, T. Hakala, P. Havu, V. Havu, T. Hoynalanmaa, J. Ignatius, M. Lyly, I. Makkonen, T.T. Rantala, J. Ruokolainen, K. Ruotsalainen, E. Rasanen, H. Saarikoski M.J. Puska, Three real-space discretization techniques in electronic structure calcu-lations, Phys. Stat. Sol. B 243 (2006).

DOI: 10.1002/pssb.200541348

Google Scholar

[17] T. Torsti, T. Eirola, J. Enkovaara, T. Hakala, P. Havu, V. Havu, T. Hoynalanmaa, J. Ignatius, M. Lyly, I. Makkonen, T.T. Rantala, J. Ruokolainen, K. Ruotsalainen, E. Rasanen, H. Saarikoski M.J. Puska, Three real-space discretization techniques in electronic structure calculations, Phys. Stat. Sol. B 243 (2006).

DOI: 10.1002/pssb.200541348

Google Scholar

[18] M. J. Puska,R. M. Nieminen, Theory of positrons in solids and on solid surfaces, Rev. Mod. Phys. 66 (1994) 841-897.

DOI: 10.1103/revmodphys.66.841

Google Scholar

[19] E. Boroński,R. M. Nieminen, Electron-positron density functional theory., Phys. Rev. B 34 (1986) 3820.

DOI: 10.1103/physrevb.34.3820

Google Scholar

[20] I. Makkonen, M. Hakala,M. J. Puska, Modeling the momentum distributions of annihilating electron-positron pairs in solids, Phys. Rev. B 73 (2006) 035103.

DOI: 10.1103/physrevb.73.035103

Google Scholar

[21] T. Zhang, K. Zhou, X. F. Li, Z. Q. Chen, X. L. Su, X. F. Tang, Reversible structural transition in spark plasma-sintered thermoelectric Zn4Sb3, J. Mater. Sci. (2015) 10. 1007/s10853-015-9514-y.

DOI: 10.1007/s10853-015-9514-y

Google Scholar

[22] Y. Mozharivskyj, A. O. Pecharsky, S. Bud'ko,G. J. Miller, A Promising Thermoelectric Material: Zn4Sb3 or Zn6-dSb5. Its Composition, Structure, Stability, and Polymorphs. Structure and Stability of Zn1-dSb, Chem. Mater. 16 (2004) 1580-1589.

DOI: 10.1021/cm035274a

Google Scholar