Positron Lifetime Calculation for Plastic Deformed Nanocrystalline Copper

Article Preview

Abstract:

Positron lifetime calculation has been performed on a computer-generated nanocrystalline copper with a mean grain size of 9.1 nm during its deformation. For the undeformed and deformed nanocrystalline copper, calculated positron lifetimes are around 157 ps which come from the positron annihilation in the free volume in grain boundaries. Due to the grain-boundary deformation mechanism, no vacancies or vacancy clusters will be induced in grains during the plastic deformation of the nanocrystalline copper, which is different to the deformation of the conventional polycrystal. From this point of view, in-situ positron annihilation measurements can provide important experimental information on the deformation mechanism of nanocrystalline metals.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

31-34

Citation:

Online since:

March 2017

Authors:

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H. -E. Schaefer, R. Würschum, R. Birringer,H. Gleiter, Phys. Rev. B 38 (1988) 9545-9554.

DOI: 10.1103/physrevb.38.9545

Google Scholar

[2] Jakub Čížek, Ivan Procházka, Miroslav Cieslar, Radomír Kužel, Jan Kuriplach, František Chmelík, Ivana Stulíková, František Bečvář, Oksana Melikhova, Rinat K. Islamgaliev, Phys. Rev. B 65 (2002) 094106.

DOI: 10.1103/physrevb.65.094106

Google Scholar

[3] S. Van Petegem, F. Dalla Torre, D. Segers,H. Van Swygenhoven, Scripta Mater. 48 (2003) 17–22.

DOI: 10.1016/s1359-6462(02)00322-6

Google Scholar

[4] Kai Zhou, Hui Li, JinBiao Pang, Zhu Wang, Philos. Mag. 92 (2012) 2079-(2088).

Google Scholar

[5] Kai Zhou, Ting Zhang, Zhu Wang, Phys. Scr. 90 (2015) 105701.

Google Scholar

[6] Hideaki Ohkubo, Z. Tang, Y. Nagai, M. Hasegawa, T. Tawara,M. Kiritani, Mater. Sci. Eng. A 350 (2003) 95-101.

Google Scholar

[7] Jakob Schiøtz, Karsten W. Jacobsen, Science 301 (2003) 1357-1359.

Google Scholar

[8] Kai Zhou, Bin Liu, Yijun Yao, Kun Zhong, Mater. Sci. Eng. A 615 (2014) 92–97.

Google Scholar

[9] S. Traiviratana, E. M. Bringa, D. J. Benson,M. A. Meyers, Acta Mater. 56 (2008) 3874-3886.

DOI: 10.1016/j.actamat.2008.03.047

Google Scholar

[10] S. Plimpton, J. Comp. Phys. 117 (1995) 1-19.

Google Scholar

[11] X.W. Zhou, R.A. Johnson H.N.G. Wadley, Phys. Rev. B 69 (2004) 144113.

Google Scholar

[12] W. Trifthauser J.D. McGervey, Appl. Phys. 6 (1975) 177-180.

Google Scholar

[13] T. Torsti, T. Eirola, J. Enkovaara, T. Hakala, P. Havu, V. Havu, T. Hoynalanmaa, J. Ignatius, M. Lyly, I. Makkonen, T.T. Rantala, J. Ruokolainen, K. Ruotsalainen, E. Rasanen, H. Saarikoski M.J. Puska, Phys. Stat. Sol. B 243 (2006) 1016-1053.

DOI: 10.1002/pssb.200541348

Google Scholar

[14] M. J. Puska,R. M. Nieminen, Rev. Mod. Phys. 66 (1994) 841-897.

Google Scholar

[15] M. J. Puska,R. M. Nieminen, J. Phys. F: Met. Phys. 13 (1983) 333-346.

Google Scholar

[16] E. Boroński,R. M. Nieminen, Phys. Rev. B 34 (1986) 3820-3831.

Google Scholar

[17] K. Momma,F. Izumi, J. Appl. Crystallogr. 44 (2011) 1272-1276.

Google Scholar

[18] K. Zhou, B. Liu, Y.J. Yao,K. Zhong, Mat. Sci. Eng. A 595 (2014) 118-125.

Google Scholar

[19] J. Kuriplach, Appl. Surf. Sci. 194 (2002) 61-70.

Google Scholar