First-Principles Calculation of Defect Formation and Positron Annihilation States in Bi2Te3

Article Preview

Abstract:

Defect formation energy in Bi2Te3 thermoelectric material was calculated using a first principles approach based on the Density Functional Theory (DFT). For vacancy-type defect, the Te1 vacancy (VTe1) is the most stable defect with low formation energy in both Bi-rich and Te-rich conditions, which indicates that the Te1 vacancies have higher probability to be formed. For antisite defects, the formation energy of BiTe1 is much lower than that of BiTe2 in Bi-rich condition, while in Te-rich condition it is beneficial for TeBi with lower formation energy. Positron wave function distribution and positron lifetimes of different annihilation states in Bi2Te3 were also calculated using the atomic superposition (ATSUP) method. The positron bulk lifetime in Bi2Te3 is about 231 ps, and for the neutral vacancy-type defects without relaxation, the positron lifetimes of VBi, VTe1 and VTe2 are 275 ps, 295 ps and 269 ps, respectively.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

41-45

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] R. Venkatasubramanian, E. Siivola, T. Colpitts & B. O'Quinn, Thin-film thermoelectric devices with high room-temperature figures of merit, Nature. 413 (2001) 597-602.

DOI: 10.1038/35098012

Google Scholar

[2] M. S. Dresselhaus, G. Chen, M. Y. Tang, R. Yang, H. Lee, D. Wang, Z. Ren, J. P. Fleurial, P. Gogna, New Directions for Low-Dimensional Thermoelectric Materials, Advanced Materials 19 (2007) 1043–1053.

DOI: 10.1002/adma.200600527

Google Scholar

[3] K. Kurosaki, H. Matsumoto, A. Charoenphakdee, S. Yamanaka, M. Ishimaru, Y. Hirotsu, Unexpectedly low thermal conductivity in natural nanostructured bulk Ga2Te3, Appl. Phys, Lett. 93 (2008) 012101.

DOI: 10.1063/1.2940591

Google Scholar

[4] H. F. He, X. F. Li, Z. Q. Chen, Y Zheng, D. W. Yang, and X. F. Tang, Interplay between Point Defects and Thermal Conductivity of Chemically Synthesized Bi2Te3 Nanocrystals Studied by Positron Annihilation, J. Phys. Chem. C 118 (2014) 22389-22394.

DOI: 10.1021/jp508085a

Google Scholar

[5] M. J. Puska, and R. M. Nieminen, Defect spectroscopy with positrons: a general calculational method, J. Phys. F: Met. Phys. 13 (1983) 333-346.

DOI: 10.1088/0305-4608/13/2/009

Google Scholar

[6] R. M. Nieminen, E. Boroński, L. J. Lantto, Two-component density-functional theory: Application to positron states, Phys. Rev. B 32 (1985) 2.

DOI: 10.1103/physrevb.32.1377

Google Scholar

[7] G. Kresse, J. Hafner, Ab initio molecule-dynamics simulation of the liquid-metal amorphous-semiconductor transition in germanium, Phys. Rev. B. 49 (1994) 14251-14269.

DOI: 10.1103/physrevb.49.14251

Google Scholar

[8] J. P. Perdew, K. Burke, M. Ernzerhof, Generalized Gradient Approximation Made Simple, Phys. Rev. Lett. 77 (1996) 3865.

DOI: 10.1103/physrevlett.77.3865

Google Scholar

[9] D. R. Hamann, Generalized norm-conserving pseudopotentials, Phys. Rev. B 40, 2980 (1989).

DOI: 10.1103/physrevb.40.2980

Google Scholar

[10] M. J. Puska, A. P. Seitsonen, and R. M. Nieminen, Electron-positron Car-Parrinello methods: Self-consistent treatment of charge densities and ionic relaxations, Phys. Rev. B 52, 10947 (1995).

DOI: 10.1103/physrevb.52.10947

Google Scholar