Simulation Study of Positron Beam Generation via Irradiating an Ultra-Intense Laser on a Hollow Target

Article Preview

Abstract:

By simulation with the relativistic PIC code EPOCH, it is found that a hollow target ismore beneficial than a plane one for the collimation and compression of the positrons. Irradiating anultra-intense laser (4×1023 W/cm2) on a hollow target, 8.74×1015 positrons are generated. Due tothe focusing effect of the transverse electric field formed in the hollow wall, the divergence angle isaround 21° , while the maximum density of the beam is 4.77×1021 cm-3. When the laser intensity is doubled, both the yield (5.31 ×1016) and the maximum density (1.57 ×1022 cm-3) are greatly increased while the beam divergence gets even smaller (15.7 °).

You might also be interested in these eBooks

Info:

Periodical:

Pages:

53-56

Citation:

Online since:

March 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2016 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] T. P. Yu, A. Pukhov, Z. M. Sheng, F. Liu, and G. Shvets, Bright Betatronlike X Rays from Radiation Pressure Acceleration of a Mass-Limited Foil Target, Phys. Rev. Lett., 2013, 110(4), 045001.

DOI: 10.1103/physrevlett.110.045001

Google Scholar

[2] A. R. Bell and J. G. Kirk, Possibility of prolific pair production with high-power lasers, Phys. Rev. Lett., 2008, 101(20), 200403.

DOI: 10.1103/physrevlett.101.200403

Google Scholar

[3] C. Ridgers, C. S. Brady, R. Duclous, J. Kirk, K. Bennett, T. Arber, and A. Bell, Dense electronpositron plasmas and bursts of gamma-rays from laser-generated quantum electrodynamic plasmas, Phys. Plasmas, 2013, 20(5), 056701.

DOI: 10.1063/1.4801513

Google Scholar

[4] R. Ruffini, G. Vereshchagin, and S.S. Xue, Electron-positron pairs in physics and astrophysics: from heavy nuclei to black holes, Phys. Rep., 2010, 487(1-4), 1-140.

DOI: 10.1016/j.physrep.2009.10.004

Google Scholar

[5] B. A. Remington, High energy density laboratory astrophysics, Plasma Phys. Control. Fusion, 2005, 47(5), 191203.

Google Scholar

[6] Y. C. Wu, J. Jiang, S. J. Wang, A. Kallis, and P. G. Coleman, Porosity and crystallization of water ice films studied by positron and positronium annihilation, Phys. Rev. B, 2011, 84(6), 064123.

DOI: 10.1103/physrevb.84.064123

Google Scholar

[7] C. Müller and C. H. Keitel, Antimatter: Abundant positron production, Nat. Photon., 2009, 3(5), 245-246.

Google Scholar

[8] J. Jiang, Y. C. Wu, X. B. Liu, R. S. Wang, Y. Nagai, K. Inoue, Y. Shimizu, and T. Toyama, Microstructural evolution of RPV steels under proton and ion irradiation studied by positron annihilation spectroscopy, J. Nucl. Mater., 2015, 458, 326-334.

DOI: 10.1016/j.jnucmat.2014.12.113

Google Scholar

[9] Y. H. Yan, B. Zhang, Y. Wu, K. Dong, Z. Yao, and Y. Gu, Comparison of direct and indirect positron-generation by an ultra-intense femtosecond laser, Phys. Plasmas, 2013, 20(10), 103114.

DOI: 10.1063/1.4826219

Google Scholar

[10] C. P. Ridgers, J. G. Kirk, R. Duclous, T. G. Blackburn, C. S. Brady, K. Bennett, T. D. Arber, and A. R. Bell, Modelling gamma-ray photon emission and pair production in high-intensity laser-matter interactions, J. Comput. Phys., 2014, 260(0), 273-285.

DOI: 10.1016/j.jcp.2013.12.007

Google Scholar

[11] A. Pukhov and J. Meyer-Ter-Vehn, Laser wake field acceleration: the highly non-linear brokenwave regime, Applied Physics B Lasers and Optics, 2002, 74(4-5), 355-361.

DOI: 10.1007/s003400200795

Google Scholar

[12] G. Sarri, W. Schumaker, A. Di Piazza, M. Vargas, B. Dromey, M. E. Dieckmann, V. Chvykov, A. Maksimchuk, V. Yanovsky, and Z. He, Table-top laser-based source of femtosecond, collimated, ultrarelativistic positron beams, Phys. Rev. Lett., 2013, 110(25), 255002.

DOI: 10.1103/physrevlett.110.255002

Google Scholar