Zirconia Biocompatibility in Animal Studies - A Systematic Review

Article Preview

Abstract:

Zirconia is a metal used in dental implantology. Its biocompatibility was studied in vitro and in vivo, results of the studies being analyzed in reviews and meta analyses. The aim of this systematic review was to evaluate biocompatibility of zirconia in animal studies in vivo expressed as results of histomorphometric tests. Databases were searched from 1980 until February 2016, with different combination of the following MeSH terms: zirconium, biocompatibility, dental implants, in vivo, animal studies. Letters to the editors, case reports, commentaries, review articles and articles published in other languages then English were excluded. The search of PubMed, ScienceDirect and Google Scholar databases yielded 690 titles. After abstract screening and duplicate discarding 50 articles were identified and finally, 40 were included in the review. Most of the studies compared zirconia with titanium, a well established material for dental implants. In majority of the studies zirconia showed a similar osseointegration with titanium. Surface implant treatments, like sandblasted and etched zirconia (ZrO2-SLA), alumina toughed zirconia (ATZ), and powder injection molding (PIM) were used to improve osseointegration of zirconia with good results. In the light of histomorphometric test, zirconia, no matter physical and structural forms tested, is a biocompatible material.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

12-28

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Helmer JC, Driskell TD. Research on Bioceramics. Symposium on Use of Ceramics as Surgical Implants. South Carolina. Clemson University; (1969).

Google Scholar

[2] Vagkopoulou T, Koutayas SO, Koidis P, Strub JR. Zirconia in dentistry: Part 1. Discovering the nature of an upcoming bioceramic. Eur J Esthet Dent. 2009 Summer; 4(2): 130-51.

Google Scholar

[3] Christel P, Meunier A, Heller M, Torre JP, Peille CN. Mechanical properties and short-term in vivo evaluation of yttrium-oxide-partially-stabilized zirconia. J Biomed Mater Res 1989; 23: 45–61.

DOI: 10.1002/jbm.820230105

Google Scholar

[4] Schmalz G, Arenholt-Bindslev D. Biocompatibility of Dental Materials. Springer-Verlag Berlin Heidelberg 2009: 1.

Google Scholar

[5] Popescu SM, Popescu FD, Burlibasa L, In vitro biocompatibility of zirconia, Metalurgia International. XV 4(2010) 12-18.

Google Scholar

[6] Moher D, Liberati A, Tetzlaff J, Altman DG. Preferred reporting items for systematic reviews and meta-analyses: the PRISMA statement. PLoS Med 2009; 6: e1000097.

DOI: 10.1371/journal.pmed.1000097

Google Scholar

[7] Stanic V, Aldini NN, Fini M, Giavaresi G, Giardino R, Krajewski A, Ravaglioli A, Mazzocchi M, Dubini B, Bossi MG, Rustichelli F, Osteointegration of bioactive glass-coated zirconia in healthy bone: an in vivo evaluation, Biomaterials. 2002 Sep; 23(18): 3833-41.

DOI: 10.1016/s0142-9612(02)00119-9

Google Scholar

[8] Kohal RJ, Wolkewitz M, Hinze M, Han JS, Bächle M, Butz F, Biomechanical and histological behavior of zirconia implants: an experiment in the rat, Clin Oral Implants Res. 2009 Apr; 20(4): 333-9.

DOI: 10.1111/j.1600-0501.2008.01656.x

Google Scholar

[9] Mai R, Kunert-Keil C, Grafe A, Gedrange T, Lauer G, Dominiak M, Gredes T. Histological behaviour of zirconia implants: an experiment in rats. Ann Anat. 2012 Nov; 194(6): 561-6.

DOI: 10.1016/j.aanat.2012.09.004

Google Scholar

[10] Kohal RJ, Bächle M, Att W, Chaar S, Altmann B, Renz A, Butz F, Osteoblast and bone tissue response to surface modified zirconia and titanium implant materials. DentMater 2013; 29: 763–76.

DOI: 10.1016/j.dental.2013.04.003

Google Scholar

[11] Kohal RJ, Bächle M, Renz A, Butz F, Evaluation of alumina toughened zirconia implants with a sintered, moderately rough surface: An experiment in the rat. Dental materials 32 (2016) 65–72.

DOI: 10.1016/j.dental.2015.10.008

Google Scholar

[12] Scarano A, Di Carlo F, Quaranta M, Piattelli A. Bone response to zirconia ceramic implants: An experimental study in rabbits. J Oral Implantol 2003; 29: 8–12.

DOI: 10.1563/1548-1336(2003)029<0008:brtzci>2.3.co;2

Google Scholar

[13] Sennerby L, Dasmah A, Larsson B, Iverhed M Bone tissue responses to surface-modified zirconia implants: A histomorphometric and removal torque study in the rabbit. Clin Implant Dent Relat Res 2005; 7: S13–S20.

DOI: 10.1111/j.1708-8208.2005.tb00070.x

Google Scholar

[14] Hoffmann O, Angelov N, Gallez F, Jung RE, Weber FE, The zirconia implant-bone interface: a preliminary histologic evaluation in rabbits, Int J Oral Maxillofac Implants. 2008 Jul-Aug; 23(4): 691-5.

Google Scholar

[15] Rocchietta I, Fontana F, Addis A, Schupbach P, Simion M, Surface-modified zirconia implants: tissue response in rabbits, Clin Oral Implants Res. 2009 Aug; 20(8): 844-50.

DOI: 10.1111/j.1600-0501.2009.01727.x

Google Scholar

[16] Lee J, Sieweke JH, Rodriguez NA, Schüpbach P, Lindström H, Susin C, Wikesjö UM. Evaluation of nano-technology-modified zirconia oral implants: a study in rabbits, J Clin Periodontol. 2009 Jul; 36(7): 610-7.

DOI: 10.1111/j.1600-051x.2009.01423.x

Google Scholar

[17] Shin D, Blanchard SB, Ito M, Chu TM, Peripheral quantitative computer tomographic, histomorphometric, and removal torque analyses of two different non-coated implants in a rabbit model. Clin Oral Implants Res. 2011 Mar; 22(3): 242-50.

DOI: 10.1111/j.1600-0501.2010.01980.x

Google Scholar

[18] Hoffmann O, Angelov N, Zafiropoulos GG, Andreana S, Osseointegration of zirconia implants with different surface characteristics: an evaluation in rabbits, Int J Oral Maxillofac Implants. 2012 Mar-Apr; 27(2): 352-8.

Google Scholar

[19] Aboushelib MN, Salem NA, Taleb AL, El Moniem NM, Influence of surface nano-roughness on osseointegration of zirconia implants in rabbit femur heads using selective infiltration etching technique. J Oral Implantol. 2013 Oct; 39(5): 583-90.

DOI: 10.1563/aaid-joi-d-11-00075

Google Scholar

[20] Salem NA, Abo Taleb AL, Aboushelib MN. Biomechanical and histomorphometric evaluation of osseointegration of fusion-sputtered zirconia implants. J Prosthodont. 2013 Jun; 22(4): 261-7.

DOI: 10.1111/j.1532-849x.2012.00940.x

Google Scholar

[21] Chung SH, Kim HK, Shon WJ, Park YS. Peri-implant bone formations around (Ti, Zr)O(2) -coated zirconia implants with different surface roughness. J Clin Periodontol. 2013 Apr; 40(4): 404-11.

DOI: 10.1111/jcpe.12073

Google Scholar

[22] Park YS, Chung SH, Shon WJ. Peri-implant bone formation and surface characteristics of rough surface zirconia implants manufactured by powder injection molding technique in rabbit tibiae. Clin Oral Implants Res. 2013 May; 24(5): 586-91.

DOI: 10.1111/j.1600-0501.2012.02468.x

Google Scholar

[23] Shon WJ, Chung SH, Kim HK, Han GJ, Cho BH, Park YS, Peri-implant bone formation of non-thermal atmospheric pressure plasma-treated zirconia implants with different surface roughness in rabbit tibiae. Clin Oral Implants Res. 2014 May; 25(5): 573-9.

DOI: 10.1111/clr.12115

Google Scholar

[24] Kim HK, Woo KM, Shon WJ, Ahn JS, Cha S, Park YS, Comparison of peri-implant bone formation around injection-molded and machined surface zirconia implants in rabbit tibiae Dental Materials Journal 2015; 34(4): 508–515.

DOI: 10.4012/dmj.2015-024

Google Scholar

[25] Suzuki, K., Aoki, K., Ohya, K., 1997. Effects of surface roughness of titanium implants on bone remodeling activity of femur in rabbits. Bone 21, 507–514.

DOI: 10.1016/s8756-3282(97)00204-4

Google Scholar

[26] Schultze-Mosgau S, Schliephake H, Radespiel-Tröger M, Neukam FW. Osseointegration of endodontic endosseous cones: zirconium oxide vs titanium. Oral Surg Oral Med Oral Pathol Oral Radiol Endod. 2000 Jan; 89(1): 91-8.

DOI: 10.1016/s1079-2104(00)80022-0

Google Scholar

[27] Gahlert M, Gudehus T, Eichhorn S, Steinhauser E, Kniha H, Erhardt W. Biomechanical and histomorphometric comparison between zirconia implants with varying surface textures and a titanium implant in the maxilla of miniature pigs. Clin Oral Implants Res. 2007 Oct; 18(5): 662-8.

DOI: 10.1111/j.1600-0501.2007.01401.x

Google Scholar

[28] Depprich R, Zipprich H, Ommerborn M, Naujoks C, Wiesmann HP, Kiattavorncharoen S, Lauer HC, Meyer U, Kübler NR, Handschel J. Osseointegration of zirconia implants compared with titanium: an in vivo study. Head Face Med. 2008 Dec 11; 4: 30.

DOI: 10.1186/1746-160x-4-30

Google Scholar

[29] Depprich R, Zipprich H, Ommerborn M, Mahn E, Lammers L, Handschel J, Naujoks C, Wiesmann HP, Kübler NR, Meyer U. Osseointegration of zirconia implants: an SEM observation of the bone-implant interface. Head Face Med. 2008 Nov 6; 4: 25.

DOI: 10.1186/1746-160x-4-25

Google Scholar

[30] Stadlinger B, Hennig M, Eckelt U, Kuhlisch E, Mai R. Comparison of zirconia and titanium implants after a short healing period. A pilot study in minipigs. Int J Oral Maxillofac Surg. 2010 Jun; 39(6): 585-92.

DOI: 10.1016/j.ijom.2010.01.015

Google Scholar

[31] Schliephake H1, Hefti T, Schlottig F, Gédet P, Staedt H. Mechanical anchorage and peri-implant bone formation of surface-modifiedzirconia in minipigs. J Clin Periodontol. 2010 Sep; 37(9): 818-28.

DOI: 10.1111/j.1600-051x.2010.01549.x

Google Scholar

[32] Gahlert M, Roehling S, Sprecher CM, Kniha H, Milz S, Bormann K. In vivo performance of zirconia and titanium implants: a histomorphometric study in mini pig maxillae. Clin Oral Implants Res. 2012 Mar; 23(3): 281-6.

DOI: 10.1111/j.1600-0501.2011.02157.x

Google Scholar

[33] Schierano G, Mussano F, Faga MG, Menicucci G, Manzella C, Sabione C, Genova T, von Degerfeld MM, Peirone B, Cassenti A, Cassoni P, Carossa S. An alumina toughened zirconia composite for dental implant application: in vivoanimal results. Biomed Res Int. 2015; 2015: 157360.

DOI: 10.1155/2015/157360

Google Scholar

[34] Gahlert M, Röhling S, Wieland M, Sprecher CM, Kniha H, Milz S. Osseointegration of zirconia and titanium dental implants: a histological and histomorphometrical study in the maxilla of pigs. Clin Oral Implants Res. 2009 Nov; 20(11): 1247-53.

DOI: 10.1111/j.1600-0501.2009.01734.x

Google Scholar

[35] Möller B, Terheyden H, Açil Y, Purcz NM, Hertrampf K, Tabakov A, Behrens E, Wiltfang J. A comparison of biocompatibility and osseointegration of ceramic and titanium implants: an in vivo and in vitro study. Int J Oral Maxillofac Surg. 2012 May; 41(5): 638-45.

DOI: 10.1016/j.ijom.2012.02.004

Google Scholar

[36] Koch FP, Weng D, Krämer S, Biesterfeld S, Jahn-Eimermacher A, Wagner W. Osseointegration of one-piece zirconia implants compared with a titanium implant of identical design: a histomorphometric study in the dog. Clin Oral Implants Res. 2010 Mar; 21(3): 350-6.

DOI: 10.1111/j.1600-0501.2009.01832.x

Google Scholar

[37] Lee BC, Yeo IS, Kim DJ, Lee JB, Kim SH, Han JS. Bone formation around zirconia implants combined with rhBMP-2 gel in the canine mandible. Clin Oral Implants Res. 2012 Aug 31. doi: 10. 1111/clr. 12004.

DOI: 10.1111/clr.12004

Google Scholar

[38] Bengazi F, Lang NP, Canciani E, Viganò P, Urbizo Velez J, Botticelli D. Osseointegration of implants with dendrimers surface characteristics installed conventionally or with Piezosurgery®. A comparative study in the dog. Clin. Oral Impl. Res. 25, 2014, 10–15.

DOI: 10.1111/clr.12082

Google Scholar

[39] Calvo-Guirado JL, Aguilar-Salvatierra A, Delgado-Ruiz RA, Negri B, Fernández MP, Maté Sánchez de Val JE, Gómez-Moreno G, Romanos GE. Histological and Histomorphometric Evaluation of Zirconia Dental Implants Modified by Femtosecond Laser versus Titanium Implants: An Experimental Study in Fox Hound Dogs. Clin Implant Dent Relat Res. 2015 Jun; 17(3): 525-32.

DOI: 10.1111/cid.12162

Google Scholar

[40] Franchi M, Orsini E, Trire A, Quaranta M, Martini D, Piccari GG, Ruggeri A, Ottani V. Osteogenesis and morphology of the peri-implant bone facing dental implants. Scientific World Journal. 2004 Dec 14; 4: 1083-95.

DOI: 10.1100/tsw.2004.211

Google Scholar

[41] Franchi M, Bacchelli B, Giavaresi G, De Pasquale V, Martini D, Fini M, Giardino R, Ruggeri A. Influence of different implant surfaces on peri-implant osteogenesis: histomorphometric analysis in sheep. J Periodontol 2007; 78: 879–888.

DOI: 10.1902/jop.2007.060280

Google Scholar

[42] Langhoff JD, Voelter K, Scharnweber D, Schnabelrauch M, Schlottig F, Hefti T, Kalchofner K, Nuss K, von Rechenberg B. Comparison of chemically and pharmaceutically modified titanium and zirconiaimplant surfaces in dentistry: a study in sheep. Int J Oral Maxillofac Surg. 2008 Dec; 37(12): 1125-32.

DOI: 10.1016/j.ijom.2008.09.008

Google Scholar

[43] Ferguson SJ, Langhoff JD, Voelter K, von Rechenberg B, Scharnweber D, Bierbaum S, Schnabelrauch M, Kautz AR, Frauchiger VM, Mueller TL, van Lenthe GH, Schlottig F. Biomechanical comparison of different surface modifications for dental implants. Int J Oral Maxillofac Implants. 2008 Nov-Dec; 23(6): 1037-46.

Google Scholar

[44] Bacchelli B1, Giavaresi G, Franchi M, Martini D, De Pasquale V, Trirè A, Fini M, Giardino R, Ruggeri A. Influence of a zirconia sandblasting treated surface on peri-implant bone healing: An experimental study in sheep. Acta Biomater. 2009 Jul; 5(6): 2246-57.

DOI: 10.1016/j.actbio.2009.01.024

Google Scholar

[45] Nordlund A, Zetterqvist L, Odén A. A comparative experimental investigation in monkeys between three different implant materials. Int J Oral Maxillofac Surg. 1989 Dec; 18(6): 373-7.

DOI: 10.1016/s0901-5027(89)80037-2

Google Scholar

[46] Akagawa Y, Hosokawa R, Sato Y, Kamayama K. Comparison between freestanding and tooth-connected partially stabilized zirconia implants after two years' function in monkeys: a clinical and histologic study. J Prosthet Dent. 1998 Nov; 80(5): 551-8.

DOI: 10.1016/s0022-3913(98)70031-9

Google Scholar

[47] Kohal RJ, Weng D, Ba¨chle M, Strub JR. Loaded custom-made zirconia and titanium implants show similar osseointegration: An animal experiment. J Periodontol 2004; 75: 1262–1268.

DOI: 10.1902/jop.2004.75.9.1262

Google Scholar