[1]
Jemat A, Ghazali MJ, Razali M, Otsuka Y., Surface Modifications and Their Effects on Titanium Dental Implants, Biomed Res Int. 2015; 2015: 791725.
DOI: 10.1155/2015/791725
Google Scholar
[2]
Goto T, Osseointegration and dental implants, Clin Calcium. 2014 Feb; 24(2): 265-71.
Google Scholar
[3]
Ciocan LT, Miculescu F, Miculescu M, Pătraşcu I., Retrieval analysis on dental implants biointegration phases, Rom J Morphol Embryol. 2010; 51(1): 117-22.
Google Scholar
[4]
Yuan JC, Sukotjo C., Occlusion for implant-supported fixed dental prostheses in partially edentulous patients: a literature review and current concepts, J Periodontal Implant Sci 2013; 43: 51e7.
DOI: 10.5051/jpis.2013.43.2.51
Google Scholar
[5]
Kim Y, Oh TJ, Misch CE, Wang HL. Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale. Clin Oral Implants Res 2005; 16: 26-35.
DOI: 10.1111/j.1600-0501.2004.01067.x
Google Scholar
[6]
Okumura N, Stegaroiu R, Kitamura E, Kurokawa K, Nomura S., Influence of maxillary cortical bone thickness, implant design and implant diameter on stress around implants: a three-dimensional finite element analysis, J Prosthodont Res 2010; 54: 133–42.
DOI: 10.1016/j.jpor.2009.12.004
Google Scholar
[7]
Comăneanu RM, Barbu HM, Coman C, Miculescu F, Chiutu L., Correlations between cyto-histopathological tissue changes at the dental implant interface and the degree of surface processing. Rom J Morphol Embryol. 2014; 55(2): 335-41.
Google Scholar
[8]
de Brandão ML, Vettore MV, Vidigal Júnior GM, Peri-implant bone loss in cement- and screw-retained prostheses: systematic review and meta-analysis, J Clin Periodontol. 2013 Mar; 40(3): 287-95.
DOI: 10.1111/jcpe.12041
Google Scholar
[9]
Rubo JH, Souza EA. Finite element analysis of stress in bone adjacent to dental implants. J Oral Implantol. 2008; 34(5): 248-55.
DOI: 10.1563/1548-1336(2008)34[249:feaosi]2.0.co;2
Google Scholar
[10]
Davis DM, Rimrott R, Zarb GA. Studies on frameworks for osseointegrated prostheses: Part 2. The effect of adding acrylic resin or porcelain to form the occlusal superstructure. Int J Oral Maxillofac Implants. 1988 Winter; 3(4): 275-80.
Google Scholar
[11]
Grando AF, Rezende CE, Sousa EA, Rubo JH., Effect of veneering material on the deformation suffered by implant-supported fixed prosthesis framework, J Appl Oral Sci. 2014 Jun; 22(3): 209-17.
DOI: 10.1590/1678-775720130517
Google Scholar
[12]
Rubo JH, Capello Souza EA., Finite-element analysis of stress on dental implant prosthesis, Clin Implant Dent Relat Res. 2010 Jun 1; 12(2): 105-13.
DOI: 10.1111/j.1708-8208.2008.00142.x
Google Scholar
[13]
Menini M, Conserva E, Tealdo T, Bevilacqua M, Pera F, Signori A, Pera P. Shock absorption capacity of restorative materials for dental implant prostheses: an in vitro study. Int J Prosthodont. 2013 Nov-Dec; 26(6): 549-56.
DOI: 10.11607/ijp.3241
Google Scholar
[14]
Wiesli MG, Özcan M. High-Performance Polymers and Their Potential Application as Medical and Oral Implant Materials: A Review, Implant Dent. 2015 Aug; 24(4): 448-57.
DOI: 10.1097/id.0000000000000285
Google Scholar
[15]
Najeeb S, Zafar MS, Khurshid Z, Siddiqui F., Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res. 2016 Jan; 60(1): 12-9.
DOI: 10.1016/j.jpor.2015.10.001
Google Scholar
[16]
Pietrabissa R, Gionso L, Quaglini V, Di Martino E, Simion M., An in vitro study on compensation of mismatch of screw versus cement-retained implant supported fixed prostheses. Clin Oral Implants Res 2000; 11: 448-57.
DOI: 10.1034/j.1600-0501.2000.011005448.x
Google Scholar
[17]
Lee MY, Heo SJ, Park EJ, Park JM., Comparative study on stress distribution around internal tapered connection implants according to fit of cement- and screw-retained prostheses. J Adv Prosthodont. 2013 Aug; 5(3): 312-8.
DOI: 10.4047/jap.2013.5.3.312
Google Scholar
[18]
Baig MR, Gunaseelan R., Metal-ceramic screw-retained implant fixed partial denture with intraoral luted framework to improve passive fit. J Oral Implantol. 2012 Apr; 38(2): 149-53.
DOI: 10.1563/aaid-joi-d-09-00089
Google Scholar
[19]
Menini M, Dellepiane E, Pera P, Bevilacqua M, Pesce P, Pera F, Tealdo T., A Luting Technique for Passive Fit of Implant-Supported Fixed Dentures, J Prosthodont. 2016 Jan; 25(1): 77-82.
DOI: 10.1111/jopr.12281
Google Scholar
[20]
Wilson TG Jr., The positive relationship between excess cement and peri-implant disease: a prospective clinical endoscopic study, J Periodontol. 2009 Sep; 80(9): 1388-92.
DOI: 10.1902/jop.2009.090115
Google Scholar
[21]
Korsch M, Walther W, Marten SM, Obst U., Microbial analysis of biofilms on cement surfaces: An investigation in cement-associated peri-implantitis, J Appl Biomater Funct Mater. 2014 Sep 5; 12(2): 70-80.
DOI: 10.5301/jabfm.5000206
Google Scholar
[22]
Wilson TG Jr, Valderrama P, Burbano M, Blansett J, Levine R, Kessler H, Rodrigues DC., Foreign bodies associated with peri-implantitis human biopsies, J Periodontol. 2015 Jan; 86(1): 9-15.
DOI: 10.1902/jop.2014.140363
Google Scholar
[23]
Ciftci Y, Canay S., The effect of veneering materials on stress distribution in implant-supported fixed prosthetic restorations, Int J Oral Maxillofac Implants 2000; 15: 571–82.
Google Scholar
[24]
Conserva E, Menini M, Tealdo T, Bevilacqua M, Ravera G, Pera F, et al. The use of a masticatory robot to analyze the shock absorption capacity of different restorative materials for prosthetic implants: a preliminary report, Int J Prosthodont 2009; 22: 53–5.
DOI: 10.4081/jbr.2011.4636
Google Scholar
[25]
Menini M, Conserva E, Tealdo T, Bevilacqua M, Pera F, Signori A, Pera P. Shock absorption capacity of restorative materials for dental implant prostheses: an in vitro study, Int J Prosthodont. 2013 Nov-Dec; 26(6): 549-56.
DOI: 10.11607/ijp.3241
Google Scholar
[26]
Tiossi R, Lin L, Conrad HJ, Rodrigues RC, Heo YC, de Mattos Mda G, Fok AS, Ribeiro RF., Digital image correlation analysis on the influence of crown material in implant-supported prostheses on bone strain distribution, J Prosthodont Res. 2012 Jan; 56(1): 25-31.
DOI: 10.1016/j.jpor.2011.05.003
Google Scholar
[27]
Santiago Junior JF, Pellizzer EP, Verri FR, de Carvalho PS., Stress analysis in bone tissue around single implants with different diameters and veneering materials: a 3-D finite element study, Mater Sci Eng C Mater Biol Appl. 2013 Dec 1; 33(8): 4700-14.
DOI: 10.1016/j.msec.2013.07.027
Google Scholar
[28]
Ismail YH, Kukunas S, Pipko D, Ibiary W. Comparative study of various occlusal materials for implant prosthodontics, J Dent Res 1989; 68: 962.
Google Scholar
[29]
Papavasiliou G, Kamposiora P, Bayne SC, Felton DA, Threedimensional finite element analysis of stress-distribution around single tooth implants as a function of bony support, prosthesis type, and loading during function, J Prosthet Dent 1996; 76: 633–640.
DOI: 10.1016/s0022-3913(96)90442-4
Google Scholar
[30]
Sertgöz A. Finite element analysis study of the effect of superstructure material on stress distribution in an implantsupported fixed prosthesis. Int J Prosthodont 1997; 10: 19–27.
Google Scholar
[31]
Stegaroiu R, Khraisat A, Nomura S, Miyakawa O., Influence of superstructure materials on strain around an implant under 2 loading conditions: a technical investigation, Int J Oral Maxillofac Implants. 2004 Sep-Oct; 19(5): 735-42.
Google Scholar
[32]
Stegaroiu R, Kusakari H, Nishiyama S, Miyakawa O., Influence of prosthesis material on stress distribution in bone and implant: a 3-dimensional finite element analysis, Int J Oral Maxillofac Implants. 1998 Nov-Dec; 13(6): 781-90.
Google Scholar
[33]
Juodzbalys G, Kubilius R, Eidukynas V, Raustia AM., Stress distribution in bone: single-unit implant prostheses veneered with porcelain or a new composite material, Implant Dent. 2005 Jun; 14(2): 166-75.
DOI: 10.1097/01.id.0000165030.59555.2c
Google Scholar
[34]
Marin DO, Dias Kde C, Paleari AG, Pero AC, Arioli Filho JN, Compagnoni MA., Split-Framework in Mandibular Implant-Supported Prosthesis, Case Rep Dent. 2015; 2015: 502394.
DOI: 10.1155/2015/502394
Google Scholar
[35]
Faverani LP, Barão VA, Ramalho-Ferreira G, Delben JA, Ferreira MB, Garcia Júnior IR, Assunção WG., The influence of bone quality on the biomechanical behavior of full-arch implant-supported fixed prostheses. Mater Sci Eng C Mater Biol Appl. 2014 Apr 1; 37: 164-70.
DOI: 10.1016/j.msec.2014.01.013
Google Scholar
[36]
Tarek A. Soliman, Raafat A. Tamam, Salah A. Yousief, Mohamed I. El-Anwar, Assessment of stress distribution around implant fixture with three different crown materials, Tanta Dental Journal 12 (4), 2015: 249–258.
DOI: 10.1016/j.tdj.2015.08.001
Google Scholar
[37]
Soumeire J, Dejou J., Shock absorbability of various restorative materials used on implants, J Oral Rehabil 1999; 26: 394–401.
DOI: 10.1046/j.1365-2842.1999.00377.x
Google Scholar
[38]
Al Jabbari YS., Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature, J Adv Prosthodont. 2014 Apr; 6(2): 138-45.
DOI: 10.4047/jap.2014.6.2.138
Google Scholar
[39]
Freilich MA, Duncan JP, Alarcon EK, Eckrote KA, Goldberg AJ., The design and fabrication of fiber-reinforced implant prostheses, J Prosthet Dent 2002; 88: 449-54.
DOI: 10.1067/mpr.2002.128173
Google Scholar
[40]
Meric G., Erkmen E., Kurt A., Tunc Y., Eser A. Influence of prosthesis type and material on the stress distribution in bone around implants: A 3-dimensional finite element analysis, 2011 Journal of Dental Sciences, 6 (1) : 25-32.
DOI: 10.1016/j.jds.2011.02.005
Google Scholar
[41]
Fontijn-Tekamp FA, Slagter AP, Van Der Bilt A, Van 'T Hof MA, Witter DJ, Kalk W, Jansen JA. Biting and chewing in overdentures, full dentures, and natural dentitions. J Dent Res. 2000 Jul; 79(7): 1519-24.
DOI: 10.1177/00220345000790071501
Google Scholar
[42]
Maruo Y, Nishigawa G, Irie M, Yoshihara K, Minagi S., Flexural properties of polyethylene, glass and carbon fiber-reinforced resin composites for prosthetic frameworks, Acta Odontol Scand. 2015; 73(8): 581-7.
DOI: 10.3109/00016357.2014.958875
Google Scholar
[43]
Behr M, Rosentritt M, Lang R, Chazot C, Handel G., Glass-fibre reinforced- composite fixed partial dentures on dental implants, J Oral Rehabil 2001; 28: 895-902.
DOI: 10.1111/j.1365-2842.2001.00768.x
Google Scholar
[44]
Steinberg EL, Rath E, Shlaifer A, Chechik O, Maman E, Salai M., Carbon fiber reinforced PEEK Optima - A composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater 2013 Jun; 17: 221-8.
DOI: 10.1016/j.jmbbm.2012.09.013
Google Scholar
[45]
Asvanund P, Morgano SM., Photoelalastic stress analysis of external versus internal implant-abutment connections, J Prosthet Dent. 2011 Oct; 106(4): 266-71.
DOI: 10.1016/s0022-3913(11)60128-5
Google Scholar
[46]
Neumann EA, Villar CC, França FM., Fracture resistance of abutment screws made of titanium, polyetheretherketone, and carbon fiber-reinforcedpolyetheretherketone, Braz Oral Res. 2014; 28(1): 1-5.
DOI: 10.1590/1807-3107bor-2014.vol28.0028
Google Scholar
[47]
Abdullah MR, Goharian A, Abdul Kadir MR, Wahit MU, Biomechanical and bioactivity concepts of polyetheretherketone composites for use in orthopedic implants-a review. J Biomed Mater Res A. 2015 Nov; 103(11): 3689-702.
DOI: 10.1002/jbm.a.35480
Google Scholar
[48]
Schwitalla AD, Spintig T, Kallage I, Müller WD., Flexural behavior of PEEK materials for dental application, Dent Mater. 2015 Nov; 31(11): 1377-84.
DOI: 10.1016/j.dental.2015.08.151
Google Scholar
[49]
Stawarczyk B, Beuer F, Wimmer T, Jahn D, Sener B, Roos M, Schmidlin PR., PEEK —A suitable material for fixed dental prostheses?, J Biomed Mater Res B Appl Biomater. 2013 Oct; 101(7): 1209-16.
DOI: 10.1002/jbm.b.32932
Google Scholar
[50]
Behr M, Rosentritt M, Lang R, Handel G., Glass fiber-reinforced abutments for dental implants. A pilot study, ClinOral Implants Res 2001; 12: 174-178.
DOI: 10.1034/j.1600-0501.2001.012002174.x
Google Scholar
[51]
** www. bredent. com/en/bredent/download/27228.
Google Scholar
[52]
Stephan Adler, Steffen Kistler, Frank Kistler, Jörg Lermer, Jörg Neugebauer, Compression-moulding rather than milling. A wealth of possible applications for high-performance polymers, Quintessenz Zahntech 2013; 39(3): 2–10.
DOI: 10.1111/j.1754-4505.2012.00264.x
Google Scholar
[53]
Zoidis P, Papathanasiou I, Polyzois G., The Use of a Modified Poly-Ether-Ether-Ketone (PEEK) as an Alternative Framework Material for Removable Dental Prostheses, A Clinical Report. J Prosthodont. 2015 Jul 27.
DOI: 10.1111/jopr.12325
Google Scholar
[54]
B. Siewert, M. Parra, A new group of materials in dentistry. PEEK as a framework material for 12-piece implant-supported bridges, Z Zahnärztl Implantol 2013; 29: 148- 159.
Google Scholar
[55]
Najeeb S Zafar MS, Khurshid Z, Siddiqui F., Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics, J Prosthodont Res. 2016 Jan; 60(1): 12-9.
DOI: 10.1016/j.jpor.2015.10.001
Google Scholar
[56]
Gaviria L, Salcido JP, Guda T, Ong JL., Current trends in dental implants, J Korean Assoc Oral Maxillofac Surg. 2014 Apr; 40(2): 50-60.
DOI: 10.5125/jkaoms.2014.40.2.50
Google Scholar
[57]
Meningaud JP, Spahn F, Donsimoni JM., After titanium, PEEK?, Rev Stomatol Chir Maxillofac. 2012 Nov; 113(5): 407-10.
Google Scholar
[58]
Schwitalla A, Müller WD., PEEK dental implants: a review of the literature. J Oral Implantol. 2013 Dec; 39(6): 743-9.
Google Scholar
[59]
Lee WT, Koak JY, Lim YJ, Kim SK, Kwon HB, Kim MJ, Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants, J Biomed Mater Res B Appl Biomater. 2012 May; 100(4): 1044-52.
DOI: 10.1002/jbm.b.32669
Google Scholar
[60]
Sarot JR, Contar CM, Cruz AC, de Souza Magini R. Evaluation of the stress distribution in CFR-PEEK dental implants by the three-dimensional finite element method. J Mater Sci Mater Med. 2010 Jul; 21(7): 2079-85.
DOI: 10.1007/s10856-010-4084-7
Google Scholar
[61]
Schwitalla AD, Abou-Emara M, Spintig T, Lackmann J, Müller WD., Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone, Biomech. 2015 Jan 2; 48(1): 1-7.
DOI: 10.1016/j.jbiomech.2014.11.017
Google Scholar
[62]
Najeeb S, Khurshid Z, Matinlinna JP, Siddiqui F, Nassani MZ, Baroudi K., Nanomodified Peek Dental Implants: Bioactive Composites and Surface Modification-A Review. Int J Dent. 2015; 2015: 381759.
DOI: 10.1155/2015/381759
Google Scholar
[63]
Nakamura K, Kanno T, Milleding P, Ortengren U., Zirconia as a dental implant abutment material: a systematic review. Int J Prosthodont. 2010 Jul-Aug; 23(4): 299-309.
Google Scholar
[64]
** http: /www. bredent. co. uk/downloads/technical/1_000769GB_sky_elegance. pdf.
Google Scholar
[65]
Ribeiro CG, Maia MLC, Scherrer SS, Cardoso AC, Wiskott HWA, Resistance of three implant-abutment interfaces to fatigue testing, J Appl Oral Sci. 2011 Aug; 19(4): 413-20.
DOI: 10.1590/s1678-77572011005000018
Google Scholar
[66]
Neumann EA, Villar CC, França FM., Fracture resistance of abutment screws made of titanium, polyetheretherketone, and carbon fiber-reinforced polyetheretherketone, Braz Oral Res. 2014; 28(1): 1-5.
DOI: 10.1590/1807-3107bor-2014.vol28.0028
Google Scholar
[67]
Agustín-Panadero R, Serra-Pastor B, Roig-Vanaclocha A, Román-Rodriguez JL, Fons-Font A., Mechanical behavior of provisional implant prosthetic abutments, Med Oral Patol Oral Cir Bucal. 2015 Jan 1; 20(1): e94-102.
DOI: 10.4317/medoral.19958
Google Scholar