Current Options of Making Implant Supported Prosthetic Restorations to Mitigate the Impact of Occlusal Forces

Article Preview

Abstract:

The lack of a periodontium for a dental implant may lead to high stress concentration at the bone level when the implants are prosthetically loaded. The present paper discusses the current possibilities of implant supported prosthesis making in order to mitigate the impact of occlusal forces. The cement layer may serve as an absorber for the strain, but its role is reduced and poses the risk of excess cement retained in the peri-implant tissue. The use of resin materials for the implant supported prosthetic restorations veneering it has been suggested for many years, but their role it is important in the case of full-arch fixed implant-supported prosthesis with cantilever distal extensions and less in single implant restorations. Nowadays, new materials like fiber-reinforced composites and high-performance polymers as PEEK may be used for the framework of the implant supported prosthetic restorations, but also for the implant or the prosthetic abutment realization.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

66-77

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Jemat A, Ghazali MJ, Razali M, Otsuka Y., Surface Modifications and Their Effects on Titanium Dental Implants, Biomed Res Int. 2015; 2015: 791725.

DOI: 10.1155/2015/791725

Google Scholar

[2] Goto T, Osseointegration and dental implants, Clin Calcium. 2014 Feb; 24(2): 265-71.

Google Scholar

[3] Ciocan LT, Miculescu F, Miculescu M, Pătraşcu I., Retrieval analysis on dental implants biointegration phases, Rom J Morphol Embryol. 2010; 51(1): 117-22.

Google Scholar

[4] Yuan JC, Sukotjo C., Occlusion for implant-supported fixed dental prostheses in partially edentulous patients: a literature review and current concepts, J Periodontal Implant Sci 2013; 43: 51e7.

DOI: 10.5051/jpis.2013.43.2.51

Google Scholar

[5] Kim Y, Oh TJ, Misch CE, Wang HL. Occlusal considerations in implant therapy: clinical guidelines with biomechanical rationale. Clin Oral Implants Res 2005; 16: 26-35.

DOI: 10.1111/j.1600-0501.2004.01067.x

Google Scholar

[6] Okumura N, Stegaroiu R, Kitamura E, Kurokawa K, Nomura S., Influence of maxillary cortical bone thickness, implant design and implant diameter on stress around implants: a three-dimensional finite element analysis, J Prosthodont Res 2010; 54: 133–42.

DOI: 10.1016/j.jpor.2009.12.004

Google Scholar

[7] Comăneanu RM, Barbu HM, Coman C, Miculescu F, Chiutu L., Correlations between cyto-histopathological tissue changes at the dental implant interface and the degree of surface processing. Rom J Morphol Embryol. 2014; 55(2): 335-41.

Google Scholar

[8] de Brandão ML, Vettore MV, Vidigal Júnior GM, Peri-implant bone loss in cement- and screw-retained prostheses: systematic review and meta-analysis, J Clin Periodontol. 2013 Mar; 40(3): 287-95.

DOI: 10.1111/jcpe.12041

Google Scholar

[9] Rubo JH, Souza EA. Finite element analysis of stress in bone adjacent to dental implants. J Oral Implantol. 2008; 34(5): 248-55.

DOI: 10.1563/1548-1336(2008)34[249:feaosi]2.0.co;2

Google Scholar

[10] Davis DM, Rimrott R, Zarb GA. Studies on frameworks for osseointegrated prostheses: Part 2. The effect of adding acrylic resin or porcelain to form the occlusal superstructure. Int J Oral Maxillofac Implants. 1988 Winter; 3(4): 275-80.

Google Scholar

[11] Grando AF, Rezende CE, Sousa EA, Rubo JH., Effect of veneering material on the deformation suffered by implant-supported fixed prosthesis framework, J Appl Oral Sci. 2014 Jun; 22(3): 209-17.

DOI: 10.1590/1678-775720130517

Google Scholar

[12] Rubo JH, Capello Souza EA., Finite-element analysis of stress on dental implant prosthesis, Clin Implant Dent Relat Res. 2010 Jun 1; 12(2): 105-13.

DOI: 10.1111/j.1708-8208.2008.00142.x

Google Scholar

[13] Menini M, Conserva E, Tealdo T, Bevilacqua M, Pera F, Signori A, Pera P. Shock absorption capacity of restorative materials for dental implant prostheses: an in vitro study. Int J Prosthodont. 2013 Nov-Dec; 26(6): 549-56.

DOI: 10.11607/ijp.3241

Google Scholar

[14] Wiesli MG, Özcan M. High-Performance Polymers and Their Potential Application as Medical and Oral Implant Materials: A Review, Implant Dent. 2015 Aug; 24(4): 448-57.

DOI: 10.1097/id.0000000000000285

Google Scholar

[15] Najeeb S, Zafar MS, Khurshid Z, Siddiqui F., Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics. J Prosthodont Res. 2016 Jan; 60(1): 12-9.

DOI: 10.1016/j.jpor.2015.10.001

Google Scholar

[16] Pietrabissa R, Gionso L, Quaglini V, Di Martino E, Simion M., An in vitro study on compensation of mismatch of screw versus cement-retained implant supported fixed prostheses. Clin Oral Implants Res 2000; 11: 448-57.

DOI: 10.1034/j.1600-0501.2000.011005448.x

Google Scholar

[17] Lee MY, Heo SJ, Park EJ, Park JM., Comparative study on stress distribution around internal tapered connection implants according to fit of cement- and screw-retained prostheses. J Adv Prosthodont. 2013 Aug; 5(3): 312-8.

DOI: 10.4047/jap.2013.5.3.312

Google Scholar

[18] Baig MR, Gunaseelan R., Metal-ceramic screw-retained implant fixed partial denture with intraoral luted framework to improve passive fit. J Oral Implantol. 2012 Apr; 38(2): 149-53.

DOI: 10.1563/aaid-joi-d-09-00089

Google Scholar

[19] Menini M, Dellepiane E, Pera P, Bevilacqua M, Pesce P, Pera F, Tealdo T., A Luting Technique for Passive Fit of Implant-Supported Fixed Dentures, J Prosthodont. 2016 Jan; 25(1): 77-82.

DOI: 10.1111/jopr.12281

Google Scholar

[20] Wilson TG Jr., The positive relationship between excess cement and peri-implant disease: a prospective clinical endoscopic study, J Periodontol. 2009 Sep; 80(9): 1388-92.

DOI: 10.1902/jop.2009.090115

Google Scholar

[21] Korsch M, Walther W, Marten SM, Obst U., Microbial analysis of biofilms on cement surfaces: An investigation in cement-associated peri-implantitis, J Appl Biomater Funct Mater. 2014 Sep 5; 12(2): 70-80.

DOI: 10.5301/jabfm.5000206

Google Scholar

[22] Wilson TG Jr, Valderrama P, Burbano M, Blansett J, Levine R, Kessler H, Rodrigues DC., Foreign bodies associated with peri-implantitis human biopsies, J Periodontol. 2015 Jan; 86(1): 9-15.

DOI: 10.1902/jop.2014.140363

Google Scholar

[23] Ciftci Y, Canay S., The effect of veneering materials on stress distribution in implant-supported fixed prosthetic restorations, Int J Oral Maxillofac Implants 2000; 15: 571–82.

Google Scholar

[24] Conserva E, Menini M, Tealdo T, Bevilacqua M, Ravera G, Pera F, et al. The use of a masticatory robot to analyze the shock absorption capacity of different restorative materials for prosthetic implants: a preliminary report, Int J Prosthodont 2009; 22: 53–5.

DOI: 10.4081/jbr.2011.4636

Google Scholar

[25] Menini M, Conserva E, Tealdo T, Bevilacqua M, Pera F, Signori A, Pera P. Shock absorption capacity of restorative materials for dental implant prostheses: an in vitro study, Int J Prosthodont. 2013 Nov-Dec; 26(6): 549-56.

DOI: 10.11607/ijp.3241

Google Scholar

[26] Tiossi R, Lin L, Conrad HJ, Rodrigues RC, Heo YC, de Mattos Mda G, Fok AS, Ribeiro RF., Digital image correlation analysis on the influence of crown material in implant-supported prostheses on bone strain distribution, J Prosthodont Res. 2012 Jan; 56(1): 25-31.

DOI: 10.1016/j.jpor.2011.05.003

Google Scholar

[27] Santiago Junior JF, Pellizzer EP, Verri FR, de Carvalho PS., Stress analysis in bone tissue around single implants with different diameters and veneering materials: a 3-D finite element study, Mater Sci Eng C Mater Biol Appl. 2013 Dec 1; 33(8): 4700-14.

DOI: 10.1016/j.msec.2013.07.027

Google Scholar

[28] Ismail YH, Kukunas S, Pipko D, Ibiary W. Comparative study of various occlusal materials for implant prosthodontics, J Dent Res 1989; 68: 962.

Google Scholar

[29] Papavasiliou G, Kamposiora P, Bayne SC, Felton DA, Threedimensional finite element analysis of stress-distribution around single tooth implants as a function of bony support, prosthesis type, and loading during function, J Prosthet Dent 1996; 76: 633–640.

DOI: 10.1016/s0022-3913(96)90442-4

Google Scholar

[30] Sertgöz A. Finite element analysis study of the effect of superstructure material on stress distribution in an implantsupported fixed prosthesis. Int J Prosthodont 1997; 10: 19–27.

Google Scholar

[31] Stegaroiu R, Khraisat A, Nomura S, Miyakawa O., Influence of superstructure materials on strain around an implant under 2 loading conditions: a technical investigation, Int J Oral Maxillofac Implants. 2004 Sep-Oct; 19(5): 735-42.

Google Scholar

[32] Stegaroiu R, Kusakari H, Nishiyama S, Miyakawa O., Influence of prosthesis material on stress distribution in bone and implant: a 3-dimensional finite element analysis, Int J Oral Maxillofac Implants. 1998 Nov-Dec; 13(6): 781-90.

Google Scholar

[33] Juodzbalys G, Kubilius R, Eidukynas V, Raustia AM., Stress distribution in bone: single-unit implant prostheses veneered with porcelain or a new composite material, Implant Dent. 2005 Jun; 14(2): 166-75.

DOI: 10.1097/01.id.0000165030.59555.2c

Google Scholar

[34] Marin DO, Dias Kde C, Paleari AG, Pero AC, Arioli Filho JN, Compagnoni MA., Split-Framework in Mandibular Implant-Supported Prosthesis, Case Rep Dent. 2015; 2015: 502394.

DOI: 10.1155/2015/502394

Google Scholar

[35] Faverani LP, Barão VA, Ramalho-Ferreira G, Delben JA, Ferreira MB, Garcia Júnior IR, Assunção WG., The influence of bone quality on the biomechanical behavior of full-arch implant-supported fixed prostheses. Mater Sci Eng C Mater Biol Appl. 2014 Apr 1; 37: 164-70.

DOI: 10.1016/j.msec.2014.01.013

Google Scholar

[36] Tarek A. Soliman, Raafat A. Tamam, Salah A. Yousief, Mohamed I. El-Anwar, Assessment of stress distribution around implant fixture with three different crown materials, Tanta Dental Journal 12 (4), 2015: 249–258.

DOI: 10.1016/j.tdj.2015.08.001

Google Scholar

[37] Soumeire J, Dejou J., Shock absorbability of various restorative materials used on implants, J Oral Rehabil 1999; 26: 394–401.

DOI: 10.1046/j.1365-2842.1999.00377.x

Google Scholar

[38] Al Jabbari YS., Physico-mechanical properties and prosthodontic applications of Co-Cr dental alloys: a review of the literature, J Adv Prosthodont. 2014 Apr; 6(2): 138-45.

DOI: 10.4047/jap.2014.6.2.138

Google Scholar

[39] Freilich MA, Duncan JP, Alarcon EK, Eckrote KA, Goldberg AJ., The design and fabrication of fiber-reinforced implant prostheses, J Prosthet Dent 2002; 88: 449-54.

DOI: 10.1067/mpr.2002.128173

Google Scholar

[40] Meric G., Erkmen E., Kurt A., Tunc Y., Eser A. Influence of prosthesis type and material on the stress distribution in bone around implants: A 3-dimensional finite element analysis, 2011 Journal of Dental Sciences, 6 (1) : 25-32.

DOI: 10.1016/j.jds.2011.02.005

Google Scholar

[41] Fontijn-Tekamp FA, Slagter AP, Van Der Bilt A, Van 'T Hof MA, Witter DJ, Kalk W, Jansen JA. Biting and chewing in overdentures, full dentures, and natural dentitions. J Dent Res. 2000 Jul; 79(7): 1519-24.

DOI: 10.1177/00220345000790071501

Google Scholar

[42] Maruo Y, Nishigawa G, Irie M, Yoshihara K, Minagi S., Flexural properties of polyethylene, glass and carbon fiber-reinforced resin composites for prosthetic frameworks, Acta Odontol Scand. 2015; 73(8): 581-7.

DOI: 10.3109/00016357.2014.958875

Google Scholar

[43] Behr M, Rosentritt M, Lang R, Chazot C, Handel G., Glass-fibre reinforced- composite fixed partial dentures on dental implants, J Oral Rehabil 2001; 28: 895-902.

DOI: 10.1111/j.1365-2842.2001.00768.x

Google Scholar

[44] Steinberg EL, Rath E, Shlaifer A, Chechik O, Maman E, Salai M., Carbon fiber reinforced PEEK Optima - A composite material biomechanical properties and wear/debris characteristics of CF-PEEK composites for orthopedic trauma implants. J Mech Behav Biomed Mater 2013 Jun; 17: 221-8.

DOI: 10.1016/j.jmbbm.2012.09.013

Google Scholar

[45] Asvanund P, Morgano SM., Photoelalastic stress analysis of external versus internal implant-abutment connections, J Prosthet Dent. 2011 Oct; 106(4): 266-71.

DOI: 10.1016/s0022-3913(11)60128-5

Google Scholar

[46] Neumann EA, Villar CC, França FM., Fracture resistance of abutment screws made of titanium, polyetheretherketone, and carbon fiber-reinforcedpolyetheretherketone, Braz Oral Res. 2014; 28(1): 1-5.

DOI: 10.1590/1807-3107bor-2014.vol28.0028

Google Scholar

[47] Abdullah MR, Goharian A, Abdul Kadir MR, Wahit MU, Biomechanical and bioactivity concepts of polyetheretherketone composites for use in orthopedic implants-a review. J Biomed Mater Res A. 2015 Nov; 103(11): 3689-702.

DOI: 10.1002/jbm.a.35480

Google Scholar

[48] Schwitalla AD, Spintig T, Kallage I, Müller WD., Flexural behavior of PEEK materials for dental application, Dent Mater. 2015 Nov; 31(11): 1377-84.

DOI: 10.1016/j.dental.2015.08.151

Google Scholar

[49] Stawarczyk B, Beuer F, Wimmer T, Jahn D, Sener B, Roos M, Schmidlin PR., PEEK —A suitable material for fixed dental prostheses?, J Biomed Mater Res B Appl Biomater. 2013 Oct; 101(7): 1209-16.

DOI: 10.1002/jbm.b.32932

Google Scholar

[50] Behr M, Rosentritt M, Lang R, Handel G., Glass fiber-reinforced abutments for dental implants. A pilot study, ClinOral Implants Res 2001; 12: 174-178.

DOI: 10.1034/j.1600-0501.2001.012002174.x

Google Scholar

[51] ** www. bredent. com/en/bredent/download/27228.

Google Scholar

[52] Stephan Adler, Steffen Kistler, Frank Kistler, Jörg Lermer, Jörg Neugebauer, Compression-moulding rather than milling. A wealth of possible applications for high-performance polymers, Quintessenz Zahntech 2013; 39(3): 2–10.

DOI: 10.1111/j.1754-4505.2012.00264.x

Google Scholar

[53] Zoidis P, Papathanasiou I, Polyzois G., The Use of a Modified Poly-Ether-Ether-Ketone (PEEK) as an Alternative Framework Material for Removable Dental Prostheses, A Clinical Report. J Prosthodont. 2015 Jul 27.

DOI: 10.1111/jopr.12325

Google Scholar

[54] B. Siewert, M. Parra, A new group of materials in dentistry. PEEK as a framework material for 12-piece implant-supported bridges, Z Zahnärztl Implantol 2013; 29: 148- 159.

Google Scholar

[55] Najeeb S Zafar MS, Khurshid Z, Siddiqui F., Applications of polyetheretherketone (PEEK) in oral implantology and prosthodontics, J Prosthodont Res. 2016 Jan; 60(1): 12-9.

DOI: 10.1016/j.jpor.2015.10.001

Google Scholar

[56] Gaviria L, Salcido JP, Guda T, Ong JL., Current trends in dental implants, J Korean Assoc Oral Maxillofac Surg. 2014 Apr; 40(2): 50-60.

DOI: 10.5125/jkaoms.2014.40.2.50

Google Scholar

[57] Meningaud JP, Spahn F, Donsimoni JM., After titanium, PEEK?, Rev Stomatol Chir Maxillofac. 2012 Nov; 113(5): 407-10.

Google Scholar

[58] Schwitalla A, Müller WD., PEEK dental implants: a review of the literature. J Oral Implantol. 2013 Dec; 39(6): 743-9.

Google Scholar

[59] Lee WT, Koak JY, Lim YJ, Kim SK, Kwon HB, Kim MJ, Stress shielding and fatigue limits of poly-ether-ether-ketone dental implants, J Biomed Mater Res B Appl Biomater. 2012 May; 100(4): 1044-52.

DOI: 10.1002/jbm.b.32669

Google Scholar

[60] Sarot JR, Contar CM, Cruz AC, de Souza Magini R. Evaluation of the stress distribution in CFR-PEEK dental implants by the three-dimensional finite element method. J Mater Sci Mater Med. 2010 Jul; 21(7): 2079-85.

DOI: 10.1007/s10856-010-4084-7

Google Scholar

[61] Schwitalla AD, Abou-Emara M, Spintig T, Lackmann J, Müller WD., Finite element analysis of the biomechanical effects of PEEK dental implants on the peri-implant bone, Biomech. 2015 Jan 2; 48(1): 1-7.

DOI: 10.1016/j.jbiomech.2014.11.017

Google Scholar

[62] Najeeb S, Khurshid Z, Matinlinna JP, Siddiqui F, Nassani MZ, Baroudi K., Nanomodified Peek Dental Implants: Bioactive Composites and Surface Modification-A Review. Int J Dent. 2015; 2015: 381759.

DOI: 10.1155/2015/381759

Google Scholar

[63] Nakamura K, Kanno T, Milleding P, Ortengren U., Zirconia as a dental implant abutment material: a systematic review. Int J Prosthodont. 2010 Jul-Aug; 23(4): 299-309.

Google Scholar

[64] ** http: /www. bredent. co. uk/downloads/technical/1_000769GB_sky_elegance. pdf.

Google Scholar

[65] Ribeiro CG, Maia MLC, Scherrer SS, Cardoso AC, Wiskott HWA, Resistance of three implant-abutment interfaces to fatigue testing, J Appl Oral Sci. 2011 Aug; 19(4): 413-20.

DOI: 10.1590/s1678-77572011005000018

Google Scholar

[66] Neumann EA, Villar CC, França FM., Fracture resistance of abutment screws made of titanium, polyetheretherketone, and carbon fiber-reinforced polyetheretherketone, Braz Oral Res. 2014; 28(1): 1-5.

DOI: 10.1590/1807-3107bor-2014.vol28.0028

Google Scholar

[67] Agustín-Panadero R, Serra-Pastor B, Roig-Vanaclocha A, Román-Rodriguez JL, Fons-Font A., Mechanical behavior of provisional implant prosthetic abutments, Med Oral Patol Oral Cir Bucal. 2015 Jan 1; 20(1): e94-102.

DOI: 10.4317/medoral.19958

Google Scholar