[1]
I.C. Benington, P.A. Biagioni, J. Briggs, Thermal changes observed at implant sites during internal and external irrigation, Clin Oral Impl Res 13 (2002) 293-297.
DOI: 10.1034/j.1600-0501.2002.130309.x
Google Scholar
[2]
C. Ercoli, P.D. Funkenbusch, H.J. Lee, The influence of drill wear on cutting efficiency and heat production during osteotomy preparation for dental implants: a study of drill durability, Int J Oral Maxillofac Implants 19 (2004) 335-349.
Google Scholar
[3]
H.J. Oh, U.M. Wikesjo, H.S. Kang, Effect of implant drill characteristics on heat generation in osteotomy sites: a pilot study, Clin Oral Impl Res 22 (2011) 722-726.
DOI: 10.1111/j.1600-0501.2010.02051.x
Google Scholar
[4]
R.M. Jochum, P.A. Reichart, Influence of multiple use of Timedur® titanium cannon drills: thermal response and scanning electron microscopic findings, Clin Oral Impl Res 11 (2000) 139-143.
DOI: 10.1034/j.1600-0501.2000.110206.x
Google Scholar
[5]
J. Won, Heat generation in one-piece implants during abutment preparation with high-speed cutting instruments, Zimmer Dental 5 (2008) 1-6.
Google Scholar
[6]
U. Brägger, W. Wermuth, E. Török, Heat generated during preparation of titanium implants of the ITI® Dental Implant System: an in vitro study, Clin Oral Impl Res 6 (1995) 254-259.
DOI: 10.1034/j.1600-0501.1995.060409.x
Google Scholar
[7]
J. Mouhyi, L. Sennerby, S. Nammour, Temperature increases during surface decontamination of titanium implants using CO2 laser, Clin Oral Impl Res 10 (1999) 54-61.
DOI: 10.1034/j.1600-0501.1999.100107.x
Google Scholar
[8]
F.A. Mistr, M. Sumer, M. Yenisey, Effect of surgical drill guide on heat generated from implant drilling, J Oral Maxillofac Surg 67 (2009) 2663-2668.
DOI: 10.1016/j.joms.2009.07.056
Google Scholar
[9]
K. Yoshida, K. Uoshima, K. Oda, Influence of heat stress to matrix on bone formation, Clin Oral Impl Res 20 (2009) 782-790.
DOI: 10.1111/j.1600-0501.2009.01654.x
Google Scholar
[10]
F. Stelzle, C. Frenkel, M. Riemann, The effect of load on heat production, thermal effects and expenditure of time during implant site preparation – an experimental ex vivo comparison between piezosurgery and conventional drilling, Clin Oral Impl Res 25 (2014).
DOI: 10.1111/clr.12077
Google Scholar
[11]
B.C. Sener, G. Dergin, B. Gursoy, Effects of irrigation tempetature on heat control in vitro at different drilling depth, Clin Oral Impl Res 20 (2009) 294-298.
DOI: 10.1111/j.1600-0501.2008.01643.x
Google Scholar
[12]
G. D. Strbac, K. Giannis, E. Unger, A novel standardized bone model for thermal evaluation of bone osteotomies with various irrigation methods, Clin Oral Impl Res 25 (2014) 622–631.
DOI: 10.1111/clr.12090
Google Scholar
[13]
G. D. Strbac, E. Unger, R. Donner, Thermal effects of a combined irrigation method during implant site drilling. A standardized in vitro study using a bovine rib model, Clin Oral Impl Res 25 (2014) 665-674.
DOI: 10.1111/clr.12032
Google Scholar
[14]
P. Trisi, M. Berardini, A. Falco, Insufficient irrigation induces peri-implant bone resorption: an in vivo histologic analysis in sheep, Clin Oral Impl Res 25 (2014) 696-701.
DOI: 10.1111/clr.12127
Google Scholar
[15]
J. L. Calvo-Guirado, J. Delgado-Peña, J. E. Maté-Sánchez, Novel hybrid drilling protocol evaluation for the implant healing – thermal changes, crestal bone loss, and bone-to-implant contact, Clin Oral Impl Res 26 (2015) 753-760.
DOI: 10.1111/clr.12341
Google Scholar
[16]
T. Misic, A. Markovic, A. Todorovic, An in vitro study of temperature changes in type 4 bone during implant placement: bone condensing versus bone drilling, Oral Surg Oral Med Oral Pathol Oral Radiol Endod 112 (2011) 28-33.
DOI: 10.1016/j.tripleo.2010.08.010
Google Scholar
[17]
G.E. Chacon, D.L. Bower, P.E. Larsen, Heat production by 3 implant drill systems after repeated drilling and sterilization, J Oral Maxillofac Surg 64 (2006) 265-269.
DOI: 10.1016/j.joms.2005.10.011
Google Scholar
[18]
J. Gaspar, G. Borrecho, P. Oliveira, Osteotomy at low-speed drilling without irrigation versus high-speed drilling with irrigation: an experimental study, Acta Med Port 26 (2013) 231-236.
Google Scholar
[19]
T.N. Ajish, P. Govindan, Thermal necrosis-experimental investigation on thermal exposure during done drilling process, Int J Appl Biomed Eng 7 (2014) 58-60.
Google Scholar
[20]
K.H. Jo, K.H. Yoon, K.S. Park, Thermally induced bone necrosis during implant surgery: 3 case reports, J Korean Assoc Oral Maxillofac Surg, 37 (2011) 406-414.
DOI: 10.5125/jkaoms.2011.37.5.406
Google Scholar
[21]
A.G. Bulutsuz, R.C. Tanyel, A.B. Katiboglu, Measurement of temperature change during the implant site preparation to determine influence of tool characteristics, Measurement 79 (2016) 354-359.
DOI: 10.1016/j.measurement.2015.05.046
Google Scholar
[22]
K. Kirstein, M. Dobrzynski, P. Kosior, Infrared thermographic assessment of cooling effectiveness in selected dental implant systems, BioMed Res Int, volume 2016, article ID 1879468.
DOI: 10.1155/2016/1879468
Google Scholar
[23]
F. Karaca, B. Aksakal, Effects of various drilling parameters on bone during implantology: an in vitro experimental study, Acta Bioeng Biomech 15 (2013) 25-32.
Google Scholar
[24]
K. Yoshida, K. Uoshima, K. Oda, Influence of heat stress to matrix on bone formation, Clin Oral Impl Res 20 (2009) 782-790.
DOI: 10.1111/j.1600-0501.2009.01654.x
Google Scholar
[25]
R.K. Pandey, S.S. Panda, Drilling of bone: a comprehensive review, J Clin Orthop Trauma 4 (2013) 15-30.
Google Scholar
[26]
C.E. Misch, Density of bone: effect on surgical approach and healing, in: C.E. Misch (Ed. ), Contemporary implant dentistry, third ed., Mosby-Elsevier, St. Louis, 2008, 645-667.
Google Scholar
[27]
A. Scarano, A. Piattelli, B. Assenza, Infrared thermographic evaluation of temperature modification induced during implant site preparation with cylindrical versus conical drills, Clin Implant Dent Relat Res 13 (2011) 319-323.
DOI: 10.1111/j.1708-8208.2009.00209.x
Google Scholar
[28]
S.H. Tehemar, Factors affecting heat generation during implant site preparation: a review of biologic observations and future considerations, Int J Maxillofac Implants 14 (1999) 127-136.
Google Scholar
[29]
E. Anitua, C. Carda, I. Andia, A novel drilling procedure and subsequent bone autograft preparation: a technical note, Int J Oral Maxillofac Implants 22 (2007) 138-145.
Google Scholar
[30]
S.J. Kim, J. Yoo, Y.S. Kim, Temperature change in pig rib bone during implant site preparation by low-speed drilling, J Appl Oral Sci 18 (2010) 522-527.
DOI: 10.1590/s1678-77572010000500016
Google Scholar
[31]
S.Y. Park, S.Y. Shin, S.M. Yang, Effect of implant drill design on the particle size of the bone collected during osteotomy, Int J Oral Maxillofac Implants 39 (2010) 1007-1011.
DOI: 10.1016/j.ijom.2010.05.009
Google Scholar
[32]
A.F. Misir, M. Sumer, M. Yenisey, Effect of surgical drill guide on heat generated from implant drilling, J Oral Maxillofac Surg 67 (2009) 2663-2668.
DOI: 10.1016/j.joms.2009.07.056
Google Scholar
[33]
G. Cordioli, Z. Majzoub, Heat generation during implant site preparation: an in vitro study, Int J Oral Maxillofac Implants 12 (1997) 186-193.
Google Scholar
[34]
A. Markovic, T. Misic, D. Mancic, Real-time thermographic analysis of low-density bone during implant placement: a randomized parallel-group clinical study comparing lateral condensation with bone drilling surgical technique, Clin Oral Impl Res 25 (2014).
DOI: 10.1111/clr.12191
Google Scholar