Experimental Evaluation of Fracture Pattern in Bilayered All-Ceramic Molar Crowns

Article Preview

Abstract:

Due to the lower opacity and translucency of many core materials, bilayered ceramic crowns were introduced to obtain sufficient veneer support and to improve aesthetics. Interfaces can have significant influence on the mechanical performance of layered structures. Veneer chipping and zirconia frameworks fractures are critical issues in all-ceramic restorations. The objective of this study was to assess failure analysis of bilayered all-ceramic molar crowns, evidenced by different type of fractures. Experiments were conducted on a right first maxillary molar. Bilayered all-ceramic crowns were obtained with a 0.5 mm thick zirconia milled framework and veneered with hot-pressed ceramics. The specimens were tested at compressive load until failure. The typical macroscopic crack pattern of all samples showed that crack propagation resulted in more broken pieces with sharp edges. Ceramic materials show considerable variation in strength due to their extreme sensitivity to cracks. Understanding the fracture behavior of dental ceramics and its relation to different materials and restorations is important from a clinical point of view.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

101-110

Citation:

Online since:

July 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E.D. Rekow, N.R. Silva, P.G. Coelho, Y. Zhang, Guess P, V.P. Thompson. Performance of dental ceramics: challenges for improvements. J Dent Res 90 (2011) 937–52.

DOI: 10.1177/0022034510391795

Google Scholar

[2] M. Gehrt, S. Wolfart, N. Rafai, S. Reich, D. Edelhoff, Clinical results of lithium-disilicate crowns after up to 9 years of service. Clin Oral Investig 17 (2013) 275–84.

DOI: 10.1007/s00784-012-0700-x

Google Scholar

[3] R. Mosharraf, M. Rismanchian, O. Savabi, A.H. Ashtiani. Influence of surface modification techniques on shear bond strength between different zirconia cores and veneering ceramics. J. Adv. Prosthodont 3 (2011). 221–8.

DOI: 10.4047/jap.2011.3.4.221

Google Scholar

[4] G. Gostemeyer, M. Jendras, M.P. Dittmer, F.W. Bach, M. Stiesch, P. Kohorst. Influence of cooling rate on zirconia/veneer interfacial adhesion. Acta Biomater 6 (2010) 4532–8.

DOI: 10.1016/j.actbio.2010.06.026

Google Scholar

[5] M.P. Dittmer, L. Borchers, M. Stiesch, P. Kohorst. Stresses and distortions within zirconia-fixed dental prostheses due to the veneering process. Acta Biomater 5 (2009) 3231–9.

DOI: 10.1016/j.actbio.2009.04.025

Google Scholar

[6] M. Guazzato, K. Proos, L. Quach, M.V. Swain. Strength, reliability and mode of fracture of bilayered porcelain/zirconia (Y-TZP) dental ceramics. Biomater 25 (2004) 5045–52.

DOI: 10.1016/j.biomaterials.2004.02.036

Google Scholar

[7] J. Fischer, P. Grohmann, B. Stawarczyk. Effect of zirconia surface treatments on the shear strength of zirconia/veneering ceramic composites. Dent Mater J 27 (2008) 448–54.

DOI: 10.4012/dmj.27.448

Google Scholar

[8] H.J. Kim, H.P. Lim, Y.J. Park, M.S. Vang. Effect of zirconia surface treatments on the shear bond strength of veneering ceramic. J Prosthet Dent 105 (2011) 315–22.

DOI: 10.1016/s0022-3913(11)60060-7

Google Scholar

[9] H. Chai, J.J.W. Lee, A.J. Mieleszko, S.J. Chu, Y. Zhang. On the interfacial fracture of porcelain/ zirconia and graded zirconia. Acta Biomater 10 (2014) 3756–61.

DOI: 10.1016/j.actbio.2014.04.016

Google Scholar

[10] G. Wang, S. Zhang, C. Bian, H. Kong. Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading. J Mech Behav Biomed Mater 39 (2014) 119–28.

DOI: 10.1016/j.jmbbm.2014.07.019

Google Scholar

[11] G. Wang, S. Zhang, C. Bian, H. Kong. Interface toughness of a zirconia–veneer system and the effect liner application. J Prosthet Dent 112 (3) (2014) 576–83.

DOI: 10.1016/j.prosdent.2013.12.010

Google Scholar

[12] P. Kosyfaki, M.V. Swain, Adhesion determination of dental porcelain to zirconia using the schwickerath test: strength vs. fracture energy approach. Acta Biomater 10 (2014) 4861–9.

DOI: 10.1016/j.actbio.2014.07.028

Google Scholar

[13] A. Kotousov, B. Kahler, M. Swain. Analysis of interfacial fracture in dental restorations. Dent. Mater. 27 (11) (2011) 1094–101.

DOI: 10.1016/j.dental.2011.06.009

Google Scholar

[14] M.M. Mirsayar, P. Park. Modified maximum tangential stress criterion for fracture behavior of zirconia/veneer interfaces. J Mech Behav Biomed Mater 59 (2016) 236-40.

DOI: 10.1016/j.jmbbm.2015.11.037

Google Scholar

[15] M. Zahran, O. El-Mowafy, L. Tam, P.A. Watson, Y. Finer, Fracture strength and fatigue resistance of all-ceramic molar crowns manufactured with CAD/CAM technology. J Prosthodont 17 (2008).

DOI: 10.1111/j.1532-849x.2008.00305.x

Google Scholar

[16] Thompson, Influence of relative layer height and testing method on the failure mode and origin in a bilayered dental ceramic composite. Dent Mater 16 (2000) 235–43.

DOI: 10.1016/s0109-5641(00)00005-1

Google Scholar

[17] A. Della Bona, K.J. Anusavice, J.J. Mecholsky Jr, Apparent interfacial fracture toughness of resin/ceramic systems. J Dent Res 85 (2006) (11) 1037–41.

DOI: 10.1177/154405910608501112

Google Scholar

[18] A. Della Bona, Bonding to ceramics: scientific evidences for clinical dentistry. 1st ed.: Artes Médicas, São Paulo, (2009).

Google Scholar

[19] M.J. Tholey, C. Berthold, M.V. Swain, N. Thiel, XRD2 micro-diffraction analysis of the interface between Y-TZP and veneering porcelain: role of application methods. Dent Mater 26(6) (2010) 545–52.

DOI: 10.1016/j.dental.2010.02.002

Google Scholar

[20] M.V. Swain, Unstable cracking (chipping) of veneering porcelain on all-ceramic dental crowns and fixed partial dentures, Acta Biomater 5(5) (2009) 1668–77.

DOI: 10.1016/j.actbio.2008.12.016

Google Scholar

[21] C.C. Gonzaga, P.F. Cesar, W.G. Miranda Jr, H.N. Yoshimura, Slow crack growth and reliability of dental ceramics. Dent Mater. 27(4) (2011) 394-406.

DOI: 10.1016/j.dental.2010.10.025

Google Scholar

[22] D.J. Green, An introduction to the mechanical properties of ceramics. Cambridge: University Press; (1998).

Google Scholar

[23] J.B. Wachtman Jr, Mechanical properties of ceramics. John Wiley & Sons, New York (1996).

Google Scholar

[24] J.E. Ritter, Predicting lifetimes of materials and material structures. Dent Mater 11 (1995) 142–6.

Google Scholar

[25] I. Sailer, A. Feher, F. Filser, L.J. Gauckler, H. Luthy, C.H. Hammerle, Five-year clinical results of zirconia frameworks for posterior fixed partial dentures, Int. J. Prosthodont. 20 (2007) 383–388.

Google Scholar

[26] I. Sailer, A. Feher, F. Filser, H. Luthy, L.J. Gauckler, P. Scharer, C.H. Franz Hammerle, Prospective clinical study of zirconia posterior fixed partial dentures: 3-yearfollow-up, Quintessence Int. 37 (2006) 685–693.

Google Scholar

[27] I. Sailer, J. Gottnerb, S. Kanelb, C.H. Hammerle, Randomized controlled clinical trial of zirconia-ceramic and metal-ceramic posterior fixed dental prostheses: a 3-year follow-up, Int. J. Prosthodont. 22 (2009) 553–560.

DOI: 10.11607/ijp.3368

Google Scholar

[28] A.J. Raigrodski, G. J. Chiche , N. Potiket, J.L. Hochstedler, S.E. Mohamed, S. Billiot, D.E. Mercante, The efficacy of posterior three- unit zirconium-oxide-based ceramic fixed partial dental prostheses: a prospective clinical pilot study, J. Prosthet. Dent. 96 (2006).

DOI: 10.1016/j.prosdent.2006.08.010

Google Scholar

[29] M.K. Molin, S.L. Karlsson, Five-year clinical prospective evaluation of zirconia-based Denzir 3-unit FPDs, Int. J. Prosthodont. 21 (2008) 223–227.

Google Scholar

[30] M. Roediger, N. Gersdorff, A. Huels, S. Rinke, Prospective evaluation of zirconia posterior fixed partial dentures: four-year clinical results, Int. J. Prosthodont. 23 (2010) 141–148.

DOI: 10.11607/ijp.3229

Google Scholar

[31] J. Schmitt, S. Holst, M. Wichmann, S. Reich, M. Gollner, J. Hamel, Zirconia posterior fixed partial dentures: a prospective clinical 3-year follow-up, Int. J. Prosthodont. 22 (2009) 597–603.

Google Scholar

[32] M. Schmitter, K. Mussotter, P. Rammelsberg, T. Stober, B. Ohlmann, O. Gabbert, Clinical performance of extended zirconia frameworks for fixed dentalprostheses: two-yearresults, J. Oral Rehabil. 36 (2009) 610–615.

DOI: 10.1111/j.1365-2842.2009.01969.x

Google Scholar

[33] P. Vultvon Steyern, P. Carlson, K. Nilner, All-ceramic fixed partial dentures designed according to the DC-Zirkontechnique. A 2-year clinical study, J. Oral Rehabil. 32 (2005) 180–187.

DOI: 10.1111/j.1365-2842.2004.01437.x

Google Scholar

[34] M. Tsumita, Y. Kokubo, C. Ohkubo, S. Sakurai, S. Fukushima, Clinical evaluation of posterior all-ceramic FPDs (Cercon): a prospective clinical pilot study, J. Prosthodont. Res. 54 (2010) 102–105.

DOI: 10.1016/j.jpor.2010.01.001

Google Scholar

[35] P. Triwatana, N. Nagaviroj, C. Tulapornchai, Clinical performance and failures of zirconia-based fixed partial dentures: a review literature, J. Adv. Prosthodont. 4 (2012) 76–83.

DOI: 10.4047/jap.2012.4.2.76

Google Scholar

[36] S.R. Ha, S.H. Kim, J.B. Lee, J.S. Han, I.S. Yeo, Effects of coping designs on fracture modes in zirconia crowns: Progressive load test, Ceramics International 42 (2016) 7380–7389.

DOI: 10.1016/j.ceramint.2016.01.141

Google Scholar

[37] N. Ereifej, F.P. Rodrigues, N. Silikas, D.C. Watts, Experimental FE shear-bonding strength at core/veneer interfaces in bilayered ceramics. Dent Mater 27(6) (2011) 590–7.

DOI: 10.1016/j.dental.2011.03.001

Google Scholar

[38] A. Della Bona, K.J. Anusavice, P.H. DeHoff, Weibull analysis and flexural strength of hot-pressed core and veneered ceramic structures. Dent Mater 19(7) (2003) 662–9.

DOI: 10.1016/s0109-5641(03)00010-1

Google Scholar

[39] K. Zeng, A. Oden, D. Rowcliffe, Evaluation of mechanical properties of dental ceramic core materials in combination with porcelains. Int J Prosthodont 11(2) (1998) 183–9.

Google Scholar

[40] M. Sebastiani, F. Massimi, G. Merlati, E. Bemporad. Residual micro-stress distributions in heat-pressed ceramic on zirconia and porcelain-fused to metal systems: Analysis by FIB-DIC ring-core method and correlation with fracture toughness. Dent Mater 31(11) (2015).

DOI: 10.1016/j.dental.2015.08.158

Google Scholar

[41] M. Ferrari, A. Giovannetti, M. Carrabba, G. Bonadeo, C. Rengo, F. Monticelli, A. Vichi. Fracture resistance of three porcelain-layered CAD/CAM zirconia frame designs. Dent Mater 30(7) (2014) e163-8.

DOI: 10.1016/j.dental.2014.02.004

Google Scholar