[1]
E.D. Rekow, N.R. Silva, P.G. Coelho, Y. Zhang, Guess P, V.P. Thompson. Performance of dental ceramics: challenges for improvements. J Dent Res 90 (2011) 937–52.
DOI: 10.1177/0022034510391795
Google Scholar
[2]
M. Gehrt, S. Wolfart, N. Rafai, S. Reich, D. Edelhoff, Clinical results of lithium-disilicate crowns after up to 9 years of service. Clin Oral Investig 17 (2013) 275–84.
DOI: 10.1007/s00784-012-0700-x
Google Scholar
[3]
R. Mosharraf, M. Rismanchian, O. Savabi, A.H. Ashtiani. Influence of surface modification techniques on shear bond strength between different zirconia cores and veneering ceramics. J. Adv. Prosthodont 3 (2011). 221–8.
DOI: 10.4047/jap.2011.3.4.221
Google Scholar
[4]
G. Gostemeyer, M. Jendras, M.P. Dittmer, F.W. Bach, M. Stiesch, P. Kohorst. Influence of cooling rate on zirconia/veneer interfacial adhesion. Acta Biomater 6 (2010) 4532–8.
DOI: 10.1016/j.actbio.2010.06.026
Google Scholar
[5]
M.P. Dittmer, L. Borchers, M. Stiesch, P. Kohorst. Stresses and distortions within zirconia-fixed dental prostheses due to the veneering process. Acta Biomater 5 (2009) 3231–9.
DOI: 10.1016/j.actbio.2009.04.025
Google Scholar
[6]
M. Guazzato, K. Proos, L. Quach, M.V. Swain. Strength, reliability and mode of fracture of bilayered porcelain/zirconia (Y-TZP) dental ceramics. Biomater 25 (2004) 5045–52.
DOI: 10.1016/j.biomaterials.2004.02.036
Google Scholar
[7]
J. Fischer, P. Grohmann, B. Stawarczyk. Effect of zirconia surface treatments on the shear strength of zirconia/veneering ceramic composites. Dent Mater J 27 (2008) 448–54.
DOI: 10.4012/dmj.27.448
Google Scholar
[8]
H.J. Kim, H.P. Lim, Y.J. Park, M.S. Vang. Effect of zirconia surface treatments on the shear bond strength of veneering ceramic. J Prosthet Dent 105 (2011) 315–22.
DOI: 10.1016/s0022-3913(11)60060-7
Google Scholar
[9]
H. Chai, J.J.W. Lee, A.J. Mieleszko, S.J. Chu, Y. Zhang. On the interfacial fracture of porcelain/ zirconia and graded zirconia. Acta Biomater 10 (2014) 3756–61.
DOI: 10.1016/j.actbio.2014.04.016
Google Scholar
[10]
G. Wang, S. Zhang, C. Bian, H. Kong. Fracture mechanics analyses of ceramic/veneer interface under mixed-mode loading. J Mech Behav Biomed Mater 39 (2014) 119–28.
DOI: 10.1016/j.jmbbm.2014.07.019
Google Scholar
[11]
G. Wang, S. Zhang, C. Bian, H. Kong. Interface toughness of a zirconia–veneer system and the effect liner application. J Prosthet Dent 112 (3) (2014) 576–83.
DOI: 10.1016/j.prosdent.2013.12.010
Google Scholar
[12]
P. Kosyfaki, M.V. Swain, Adhesion determination of dental porcelain to zirconia using the schwickerath test: strength vs. fracture energy approach. Acta Biomater 10 (2014) 4861–9.
DOI: 10.1016/j.actbio.2014.07.028
Google Scholar
[13]
A. Kotousov, B. Kahler, M. Swain. Analysis of interfacial fracture in dental restorations. Dent. Mater. 27 (11) (2011) 1094–101.
DOI: 10.1016/j.dental.2011.06.009
Google Scholar
[14]
M.M. Mirsayar, P. Park. Modified maximum tangential stress criterion for fracture behavior of zirconia/veneer interfaces. J Mech Behav Biomed Mater 59 (2016) 236-40.
DOI: 10.1016/j.jmbbm.2015.11.037
Google Scholar
[15]
M. Zahran, O. El-Mowafy, L. Tam, P.A. Watson, Y. Finer, Fracture strength and fatigue resistance of all-ceramic molar crowns manufactured with CAD/CAM technology. J Prosthodont 17 (2008).
DOI: 10.1111/j.1532-849x.2008.00305.x
Google Scholar
[16]
Thompson, Influence of relative layer height and testing method on the failure mode and origin in a bilayered dental ceramic composite. Dent Mater 16 (2000) 235–43.
DOI: 10.1016/s0109-5641(00)00005-1
Google Scholar
[17]
A. Della Bona, K.J. Anusavice, J.J. Mecholsky Jr, Apparent interfacial fracture toughness of resin/ceramic systems. J Dent Res 85 (2006) (11) 1037–41.
DOI: 10.1177/154405910608501112
Google Scholar
[18]
A. Della Bona, Bonding to ceramics: scientific evidences for clinical dentistry. 1st ed.: Artes Médicas, São Paulo, (2009).
Google Scholar
[19]
M.J. Tholey, C. Berthold, M.V. Swain, N. Thiel, XRD2 micro-diffraction analysis of the interface between Y-TZP and veneering porcelain: role of application methods. Dent Mater 26(6) (2010) 545–52.
DOI: 10.1016/j.dental.2010.02.002
Google Scholar
[20]
M.V. Swain, Unstable cracking (chipping) of veneering porcelain on all-ceramic dental crowns and fixed partial dentures, Acta Biomater 5(5) (2009) 1668–77.
DOI: 10.1016/j.actbio.2008.12.016
Google Scholar
[21]
C.C. Gonzaga, P.F. Cesar, W.G. Miranda Jr, H.N. Yoshimura, Slow crack growth and reliability of dental ceramics. Dent Mater. 27(4) (2011) 394-406.
DOI: 10.1016/j.dental.2010.10.025
Google Scholar
[22]
D.J. Green, An introduction to the mechanical properties of ceramics. Cambridge: University Press; (1998).
Google Scholar
[23]
J.B. Wachtman Jr, Mechanical properties of ceramics. John Wiley & Sons, New York (1996).
Google Scholar
[24]
J.E. Ritter, Predicting lifetimes of materials and material structures. Dent Mater 11 (1995) 142–6.
Google Scholar
[25]
I. Sailer, A. Feher, F. Filser, L.J. Gauckler, H. Luthy, C.H. Hammerle, Five-year clinical results of zirconia frameworks for posterior fixed partial dentures, Int. J. Prosthodont. 20 (2007) 383–388.
Google Scholar
[26]
I. Sailer, A. Feher, F. Filser, H. Luthy, L.J. Gauckler, P. Scharer, C.H. Franz Hammerle, Prospective clinical study of zirconia posterior fixed partial dentures: 3-yearfollow-up, Quintessence Int. 37 (2006) 685–693.
Google Scholar
[27]
I. Sailer, J. Gottnerb, S. Kanelb, C.H. Hammerle, Randomized controlled clinical trial of zirconia-ceramic and metal-ceramic posterior fixed dental prostheses: a 3-year follow-up, Int. J. Prosthodont. 22 (2009) 553–560.
DOI: 10.11607/ijp.3368
Google Scholar
[28]
A.J. Raigrodski, G. J. Chiche , N. Potiket, J.L. Hochstedler, S.E. Mohamed, S. Billiot, D.E. Mercante, The efficacy of posterior three- unit zirconium-oxide-based ceramic fixed partial dental prostheses: a prospective clinical pilot study, J. Prosthet. Dent. 96 (2006).
DOI: 10.1016/j.prosdent.2006.08.010
Google Scholar
[29]
M.K. Molin, S.L. Karlsson, Five-year clinical prospective evaluation of zirconia-based Denzir 3-unit FPDs, Int. J. Prosthodont. 21 (2008) 223–227.
Google Scholar
[30]
M. Roediger, N. Gersdorff, A. Huels, S. Rinke, Prospective evaluation of zirconia posterior fixed partial dentures: four-year clinical results, Int. J. Prosthodont. 23 (2010) 141–148.
DOI: 10.11607/ijp.3229
Google Scholar
[31]
J. Schmitt, S. Holst, M. Wichmann, S. Reich, M. Gollner, J. Hamel, Zirconia posterior fixed partial dentures: a prospective clinical 3-year follow-up, Int. J. Prosthodont. 22 (2009) 597–603.
Google Scholar
[32]
M. Schmitter, K. Mussotter, P. Rammelsberg, T. Stober, B. Ohlmann, O. Gabbert, Clinical performance of extended zirconia frameworks for fixed dentalprostheses: two-yearresults, J. Oral Rehabil. 36 (2009) 610–615.
DOI: 10.1111/j.1365-2842.2009.01969.x
Google Scholar
[33]
P. Vultvon Steyern, P. Carlson, K. Nilner, All-ceramic fixed partial dentures designed according to the DC-Zirkontechnique. A 2-year clinical study, J. Oral Rehabil. 32 (2005) 180–187.
DOI: 10.1111/j.1365-2842.2004.01437.x
Google Scholar
[34]
M. Tsumita, Y. Kokubo, C. Ohkubo, S. Sakurai, S. Fukushima, Clinical evaluation of posterior all-ceramic FPDs (Cercon): a prospective clinical pilot study, J. Prosthodont. Res. 54 (2010) 102–105.
DOI: 10.1016/j.jpor.2010.01.001
Google Scholar
[35]
P. Triwatana, N. Nagaviroj, C. Tulapornchai, Clinical performance and failures of zirconia-based fixed partial dentures: a review literature, J. Adv. Prosthodont. 4 (2012) 76–83.
DOI: 10.4047/jap.2012.4.2.76
Google Scholar
[36]
S.R. Ha, S.H. Kim, J.B. Lee, J.S. Han, I.S. Yeo, Effects of coping designs on fracture modes in zirconia crowns: Progressive load test, Ceramics International 42 (2016) 7380–7389.
DOI: 10.1016/j.ceramint.2016.01.141
Google Scholar
[37]
N. Ereifej, F.P. Rodrigues, N. Silikas, D.C. Watts, Experimental FE shear-bonding strength at core/veneer interfaces in bilayered ceramics. Dent Mater 27(6) (2011) 590–7.
DOI: 10.1016/j.dental.2011.03.001
Google Scholar
[38]
A. Della Bona, K.J. Anusavice, P.H. DeHoff, Weibull analysis and flexural strength of hot-pressed core and veneered ceramic structures. Dent Mater 19(7) (2003) 662–9.
DOI: 10.1016/s0109-5641(03)00010-1
Google Scholar
[39]
K. Zeng, A. Oden, D. Rowcliffe, Evaluation of mechanical properties of dental ceramic core materials in combination with porcelains. Int J Prosthodont 11(2) (1998) 183–9.
Google Scholar
[40]
M. Sebastiani, F. Massimi, G. Merlati, E. Bemporad. Residual micro-stress distributions in heat-pressed ceramic on zirconia and porcelain-fused to metal systems: Analysis by FIB-DIC ring-core method and correlation with fracture toughness. Dent Mater 31(11) (2015).
DOI: 10.1016/j.dental.2015.08.158
Google Scholar
[41]
M. Ferrari, A. Giovannetti, M. Carrabba, G. Bonadeo, C. Rengo, F. Monticelli, A. Vichi. Fracture resistance of three porcelain-layered CAD/CAM zirconia frame designs. Dent Mater 30(7) (2014) e163-8.
DOI: 10.1016/j.dental.2014.02.004
Google Scholar