[1]
H.W. Zhang, J.B. Wang and X. Guo, Predicting the elastic properties of single-walled carbon nanotubes, J. Mech. Phys. Solids Vol. 53 (2005), p.1929–(1950).
DOI: 10.1016/j.jmps.2005.05.001
Google Scholar
[2]
X. Chen, S. Zhang, D.A. Dikin, W. Ding, and R.S. Ruoff, Mechanics of a Carbon Nanocoil, Nano Lett. Vol. 3 (2003), pp.1299-1304.
DOI: 10.1021/nl034367o
Google Scholar
[3]
M.A. Poggi, J.S. Boyles, L.A. Bottomley, A.W. Mcfarland, J.S. Colton, C.V. Nguyen, R.M. Stevens, P.T. Lillehei, Measuring the compression of a carbon nanospring. Nano Lett. Vol. 4 (2004) 1009–16.
DOI: 10.1021/nl0497023
Google Scholar
[4]
N.K. Chang and S.H. Chang, determining mechanical properties of carbon microcoils using lateral force microscopy, IEEE Trans Nanotechnol, Vol. 7 (2008), pp.197-201.
DOI: 10.1109/tnano.2007.915004
Google Scholar
[5]
S.H. Ghaderi, E. Hajiesmaili, Molecular structural mechanics applied to coiled carbon nanotubes, COMP MATER SCI Vol. 55 (2012) p.344–349.
DOI: 10.1016/j.commatsci.2011.11.016
Google Scholar
[6]
S.H. Ghaderi, E. Hajiesmaili, nonlinear analysis of coiled carbon nanotubes using the molecular dynamics finite element method, Mater. Sci. Eng.: A. Vol 582 (2013) p.225–234.
DOI: 10.1016/j.msea.2013.05.060
Google Scholar
[7]
L. Liu, H. Gao, J. Zhao, J. Lu, Superelasticity of carbon nanocoils from atomistic quantum simulations. Nanoscale Res. Lett. 2010, 5, 478–483.
DOI: 10.1007/s11671-010-9545-x
Google Scholar
[8]
J. Wang, Travis Kemper, Tao Liang, Susan B. Sinnott, Predicted mechanical properties of a coiled carbon nanotube, CARBON Vol. 50 (2012), p.968–976.
DOI: 10.1016/j.carbon.2011.09.060
Google Scholar
[9]
H. Bi, K.C. Kou, K. Ostrikov, J.Q. Zhang, Z.C. Wang. Mechanical model and superelastic properties of carbon microcoils with circular cross-section, J. Appl. Phys. (2009), 023520.
DOI: 10.1063/1.3177324
Google Scholar
[10]
J. Wu, S. Nagao, J. He, Z. Zhang, Carbon Nanotubes: Nanohinge-Induced Plasticity of Helical Carbon Nanotubes, Small Vol. 9 (2013), p.3545.
DOI: 10.1002/smll.201370127
Google Scholar
[11]
M.M. Zaeri and S. Ziaei-Rad, Elastic behavior of carbon nanocoils a molecular dynamic, AIP Adv. Vol 5 (2015), 117114.
DOI: 10.1063/1.4935564
Google Scholar
[12]
E. Shahini, K.K. Taheri, A.K. Taheri, An investigation on tensile properties of coiled carbon nanotubes using molecular dynamics simulation, Diam Relat Mater. Vol. 74 (2017), p.154–163.
DOI: 10.1016/j.diamond.2017.02.023
Google Scholar
[13]
H.L. Ma, Z. Jia, K. t. Lau, X. Li, D. Hui and S. q. Shi, Enhancement on mechanical strength of adhesively-bonded composite lap joints at cryogenic environment using coiled carbon nanotubes, COMPOS PART B-ENG. Vol. 110 (2017), pp.396-401.
DOI: 10.1016/j.compositesb.2016.11.019
Google Scholar
[14]
L. Liu, F. Liu and J. Zhao, Curved carbon nanotubes- From unique geometries to novel properties and peculiar applications, Nano Res. Vol. 7 (2014), p.626–657.
DOI: 10.1007/s12274-014-0431-1
Google Scholar
[15]
A. Shaikjee, N.J. Coville, The synthesis properties anduses of helical morphology, J Adv Res (2011), doi: 10. 1016/j. jare. 2011. 05. 007.
Google Scholar
[16]
Dunlap, B. I. Connecting carbon tubules. Phys. Rev. B. Vol. 46 (1992), p.1933–(1936).
Google Scholar
[17]
S. Itoh and S. Ihara, Toroidal form of carbon C360. Phys. Rev. B. Vol. 47 (1993), p.1703–1704.
Google Scholar
[18]
Ihara, S.; Itoh, S. Helically coiled and toroidal cage forms of graphitic carbon, Carbon Vol. 33 (1995), p.931–939.
DOI: 10.1016/0008-6223(95)00022-6
Google Scholar
[19]
X.B. Zhang, X.F. Zhang, D. v. Bernaerts, G. Tendeloo, S. Amelinckx, J. v. Landuyt, V. Ivanov, J.B. Nagy, L. Ph, A. A Lucas, The texture of catalytically grown coil-shaped carbon nanotubules, Europhys. Lett. 27 (1994), pp.141-146.
DOI: 10.1209/0295-5075/27/2/011
Google Scholar
[20]
S. Amelinckx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov and J.B. Nagy, A formation mechanism for cataly-tically grown helix-shaped graphite nanotubes. Science Vol. 265 (1994), pp.635-639.
DOI: 10.1126/science.265.5172.635
Google Scholar
[21]
T. Gohara, K. Takei, T. Arie, and S. Akita, Insituoptical microscopy observations of the growth of individual carbon nanocoils, J. VAC. SCI. TECHNOL. B. Vol. 32 - (2014), 031807.
DOI: 10.1116/1.4874004
Google Scholar
[22]
S. Motojima and Q. Chen, Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition, J. Appl. Phys. 85, 3919 (1999).
DOI: 10.1063/1.369765
Google Scholar
[23]
A. Fonseca, K. Hernadi. J. b. Nagy. Ph. L ambin. A.A. Lucas, Mode structure of perfectly graphitizable coiled carbon nanotubes, carbon Vol. 33 (1995), pp.1759-1775.
DOI: 10.1016/0008-6223(95)00150-3
Google Scholar
[24]
R. SETTON, N. SETTON, Carbon nanotubes III. Toroidal structures and limits of a model for the construction of helical and S-shaped nanotubes, Carbon Vol. 35 (1997), pp.497-505.
DOI: 10.1016/s0008-6223(97)83726-8
Google Scholar
[25]
E.G. Espino, F.L. Urías, Y.A. Kim, T. Hayashi, H. Muramatsu, M. Endo, H. Terrones, M. Terrones and M.S. Dresselhaus, in: Novel Carbon-Based Nanomaterials Graphene and Graphitic Nanoribbons, edited by Handbook of Advanced Ceramics (Second Edition) of Materials, Applications, Processing, and Properties, chapter, 2. 2, Elsevier (2015).
DOI: 10.1016/b978-0-12-385469-8.00003-4
Google Scholar
[26]
S.I. Yengejeh, S.A. Kazemi, A. Öchsner: Advances in mechanical analysis of structurally and atomically modified carbon nanotubes and degenerated nanostructures: A review. Composites Part B, 86, 2016, 95-107.
DOI: 10.1016/j.compositesb.2015.10.006
Google Scholar
[27]
A.M. Patel and A.Y. Joshi, Effect of Stone-wales and Vacancy Defect in Double walled Carbon Nanotube for Mass Sensing, Procedia Technology Vol. 23 (2016), pp.122-129.
DOI: 10.1016/j.protcy.2016.03.007
Google Scholar
[28]
I. László, A. Rassat, The Geometric Structure of Deformed Nanotubes and the Topological Coordinates, J. Chem. Inf. Comput. Sci. Vol. 43 (2003), pp.519-524.
DOI: 10.1021/ci020070k
Google Scholar
[29]
I. László, in: Hexagonal and non-hexagonal carbon surfaces, edited by Blank and B. Kulnitskiy, Chapter 5, ps 121-146, Carbon Nanotubes and Related Structures (2008).
Google Scholar
[30]
C. Chuang, Y.C. Fan, and B.Y. Jin, Generalized Classification of Toroidal and Helical Carbon Nanotubes, Inf. Model. Vol. 49 (2009), p.361–368.
DOI: 10.1021/ci800395r
Google Scholar
[31]
C. Chuang, Y.C. Fan, and B.Y. Jin, Systematics of Toroidal, Helically-Coiled Carbon Nanotubes, High-genus Fullernens, and Other Exotic Graphitic Materials, Procedia Engineering. Vol. 14 (2011), p.2373–2385.
DOI: 10.1016/j.proeng.2011.07.299
Google Scholar
[32]
C.W. Li, T.W. Chou, A structural mechanics approach for the analysis of carbon nanotubes, ijsolstr. Vol. 40 (2003), p.2487–2499.
Google Scholar
[33]
M. Zaeri, and S. Ziaei-Rad, Elastic properties of carbon nanoscrolls, RSC Adv. Vol. 4 (2014), p.22995–23001.
DOI: 10.1039/c4ra01931h
Google Scholar
[34]
J.H. Lee, B.S. Lee, Modal-analysis-of-carbon-nanotubes-and-nanocones-using-FEM, Comp. Mater. Sci. Vol. 51 (2012) p.30–42.
DOI: 10.1016/j.commatsci.2011.06.041
Google Scholar
[35]
K.I. Tserpes, P. Papanikos, Finite element modeling of single-walled carbon nanotubes, Comp. Part B. Vol. 36 (2005), p.468–477.
DOI: 10.1016/j.compositesb.2004.10.003
Google Scholar
[36]
N.A. Sakharova, A.F.G. Pereira, J.M. Antunes, C.M.A. Brett and J.V. Fernandes, Mechanical characterization of single-walled carbon nanotubes- Numerical simulation study, Comp. Part B. Vol. 75 (2015), pp.73-85.
DOI: 10.1016/j.compositesb.2015.01.014
Google Scholar
[37]
K.M. Liew, X.Q. He and C.H. Wong, On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation, Acta Materialia Vol. 52 (2004), p.2521–2527.
DOI: 10.1016/j.actamat.2004.01.043
Google Scholar