Prediction of Mechanical Properties of Coiled Carbon Nanotubes by Molecular Structural Mechanics Based Finite Element Modelling

Article Preview

Abstract:

Carbon nanotubes (NTC) have very spectacular mechanical properties related to their nanometric structure, their perfect arrangement and their one-dimensional geometry. As with all materials, structural defects are inevitable and affects NTC properties. Among these defects, we distinguish the topological defects, the dislocations and the penta-hepta defect. But the presence of these defects is not totally harmful, because the existence of some structure like the coiled nanotube is the result of these defects. For this, in the first part of this work, the coiled carbon nanotube structure is studied, a method for the designing of this structure is proposed, the geometric parameters are detailed and the structural coefficients are determined. Therefore, a procedure for moving from a graphene sheet to a coiled nanotube is developed. Then, the second part of this study represents an attempt to calculate the spring constants of the spiral carbon nanotube. Mechanical properties of this material are investigated by means of molecular structural mechanics (MSM) method in ANSYS finite element code. The model serves as a link between the computational chemistry and the solid mechanics by substituting discrete molecular structures, with an equivalent-structural model. A coiled carbon nanotube has been modeled on the nanoscale by one-dimensional elements (3D beam). The results show a considerable influence of structural parameters (diameter, chirality, pitch and defect position) on the coiled nanotube mechanical properties.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

124-134

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] H.W. Zhang, J.B. Wang and X. Guo, Predicting the elastic properties of single-walled carbon nanotubes, J. Mech. Phys. Solids Vol. 53 (2005), p.1929–(1950).

DOI: 10.1016/j.jmps.2005.05.001

Google Scholar

[2] X. Chen, S. Zhang, D.A. Dikin, W. Ding, and R.S. Ruoff, Mechanics of a Carbon Nanocoil, Nano Lett. Vol. 3 (2003), pp.1299-1304.

DOI: 10.1021/nl034367o

Google Scholar

[3] M.A. Poggi, J.S. Boyles, L.A. Bottomley, A.W. Mcfarland, J.S. Colton, C.V. Nguyen, R.M. Stevens, P.T. Lillehei, Measuring the compression of a carbon nanospring. Nano Lett. Vol. 4 (2004) 1009–16.

DOI: 10.1021/nl0497023

Google Scholar

[4] N.K. Chang and S.H. Chang, determining mechanical properties of carbon microcoils using lateral force microscopy, IEEE Trans Nanotechnol, Vol. 7 (2008), pp.197-201.

DOI: 10.1109/tnano.2007.915004

Google Scholar

[5] S.H. Ghaderi, E. Hajiesmaili, Molecular structural mechanics applied to coiled carbon nanotubes, COMP MATER SCI Vol. 55 (2012) p.344–349.

DOI: 10.1016/j.commatsci.2011.11.016

Google Scholar

[6] S.H. Ghaderi, E. Hajiesmaili, nonlinear analysis of coiled carbon nanotubes using the molecular dynamics finite element method, Mater. Sci. Eng.: A. Vol 582 (2013) p.225–234.

DOI: 10.1016/j.msea.2013.05.060

Google Scholar

[7] L. Liu, H. Gao, J. Zhao, J. Lu, Superelasticity of carbon nanocoils from atomistic quantum simulations. Nanoscale Res. Lett. 2010, 5, 478–483.

DOI: 10.1007/s11671-010-9545-x

Google Scholar

[8] J. Wang, Travis Kemper, Tao Liang, Susan B. Sinnott, Predicted mechanical properties of a coiled carbon nanotube, CARBON Vol. 50 (2012), p.968–976.

DOI: 10.1016/j.carbon.2011.09.060

Google Scholar

[9] H. Bi, K.C. Kou, K. Ostrikov, J.Q. Zhang, Z.C. Wang. Mechanical model and superelastic properties of carbon microcoils with circular cross-section, J. Appl. Phys. (2009), 023520.

DOI: 10.1063/1.3177324

Google Scholar

[10] J. Wu, S. Nagao, J. He, Z. Zhang, Carbon Nanotubes: Nanohinge-Induced Plasticity of Helical Carbon Nanotubes, Small Vol. 9 (2013), p.3545.

DOI: 10.1002/smll.201370127

Google Scholar

[11] M.M. Zaeri and S. Ziaei-Rad, Elastic behavior of carbon nanocoils a molecular dynamic, AIP Adv. Vol 5 (2015), 117114.

DOI: 10.1063/1.4935564

Google Scholar

[12] E. Shahini, K.K. Taheri, A.K. Taheri, An investigation on tensile properties of coiled carbon nanotubes using molecular dynamics simulation, Diam Relat Mater. Vol. 74 (2017), p.154–163.

DOI: 10.1016/j.diamond.2017.02.023

Google Scholar

[13] H.L. Ma, Z. Jia, K. t. Lau, X. Li, D. Hui and S. q. Shi, Enhancement on mechanical strength of adhesively-bonded composite lap joints at cryogenic environment using coiled carbon nanotubes, COMPOS PART B-ENG. Vol. 110 (2017), pp.396-401.

DOI: 10.1016/j.compositesb.2016.11.019

Google Scholar

[14] L. Liu, F. Liu and J. Zhao, Curved carbon nanotubes- From unique geometries to novel properties and peculiar applications, Nano Res. Vol. 7 (2014), p.626–657.

DOI: 10.1007/s12274-014-0431-1

Google Scholar

[15] A. Shaikjee, N.J. Coville, The synthesis properties anduses of helical morphology, J Adv Res (2011), doi: 10. 1016/j. jare. 2011. 05. 007.

Google Scholar

[16] Dunlap, B. I. Connecting carbon tubules. Phys. Rev. B. Vol. 46 (1992), p.1933–(1936).

Google Scholar

[17] S. Itoh and S. Ihara, Toroidal form of carbon C360. Phys. Rev. B. Vol. 47 (1993), p.1703–1704.

Google Scholar

[18] Ihara, S.; Itoh, S. Helically coiled and toroidal cage forms of graphitic carbon, Carbon Vol. 33 (1995), p.931–939.

DOI: 10.1016/0008-6223(95)00022-6

Google Scholar

[19] X.B. Zhang, X.F. Zhang, D. v. Bernaerts, G. Tendeloo, S. Amelinckx, J. v. Landuyt, V. Ivanov, J.B. Nagy, L. Ph, A. A Lucas, The texture of catalytically grown coil-shaped carbon nanotubules, Europhys. Lett. 27 (1994), pp.141-146.

DOI: 10.1209/0295-5075/27/2/011

Google Scholar

[20] S. Amelinckx, X.B. Zhang, D. Bernaerts, X.F. Zhang, V. Ivanov and J.B. Nagy, A formation mechanism for cataly-tically grown helix-shaped graphite nanotubes. Science Vol. 265 (1994), pp.635-639.

DOI: 10.1126/science.265.5172.635

Google Scholar

[21] T. Gohara, K. Takei, T. Arie, and S. Akita, Insituoptical microscopy observations of the growth of individual carbon nanocoils, J. VAC. SCI. TECHNOL. B. Vol. 32 - (2014), 031807.

DOI: 10.1116/1.4874004

Google Scholar

[22] S. Motojima and Q. Chen, Three-dimensional growth mechanism of cosmo-mimetic carbon microcoils obtained by chemical vapor deposition, J. Appl. Phys. 85, 3919 (1999).

DOI: 10.1063/1.369765

Google Scholar

[23] A. Fonseca, K. Hernadi. J. b. Nagy. Ph. L ambin. A.A. Lucas, Mode structure of perfectly graphitizable coiled carbon nanotubes, carbon Vol. 33 (1995), pp.1759-1775.

DOI: 10.1016/0008-6223(95)00150-3

Google Scholar

[24] R. SETTON, N. SETTON, Carbon nanotubes III. Toroidal structures and limits of a model for the construction of helical and S-shaped nanotubes, Carbon Vol. 35 (1997), pp.497-505.

DOI: 10.1016/s0008-6223(97)83726-8

Google Scholar

[25] E.G. Espino, F.L. Urías, Y.A. Kim, T. Hayashi, H. Muramatsu, M. Endo, H. Terrones, M. Terrones and M.S. Dresselhaus, in: Novel Carbon-Based Nanomaterials Graphene and Graphitic Nanoribbons, edited by Handbook of Advanced Ceramics (Second Edition) of Materials, Applications, Processing, and Properties, chapter, 2. 2, Elsevier (2015).

DOI: 10.1016/b978-0-12-385469-8.00003-4

Google Scholar

[26] S.I. Yengejeh, S.A. Kazemi, A. Öchsner: Advances in mechanical analysis of structurally and atomically modified carbon nanotubes and degenerated nanostructures: A review. Composites Part B, 86, 2016, 95-107.

DOI: 10.1016/j.compositesb.2015.10.006

Google Scholar

[27] A.M. Patel and A.Y. Joshi, Effect of Stone-wales and Vacancy Defect in Double walled Carbon Nanotube for Mass Sensing, Procedia Technology Vol. 23 (2016), pp.122-129.

DOI: 10.1016/j.protcy.2016.03.007

Google Scholar

[28] I. László, A. Rassat, The Geometric Structure of Deformed Nanotubes and the Topological Coordinates, J. Chem. Inf. Comput. Sci. Vol. 43 (2003), pp.519-524.

DOI: 10.1021/ci020070k

Google Scholar

[29] I. László, in: Hexagonal and non-hexagonal carbon surfaces, edited by Blank and B. Kulnitskiy, Chapter 5, ps 121-146, Carbon Nanotubes and Related Structures (2008).

Google Scholar

[30] C. Chuang, Y.C. Fan, and B.Y. Jin, Generalized Classification of Toroidal and Helical Carbon Nanotubes, Inf. Model. Vol. 49 (2009), p.361–368.

DOI: 10.1021/ci800395r

Google Scholar

[31] C. Chuang, Y.C. Fan, and B.Y. Jin, Systematics of Toroidal, Helically-Coiled Carbon Nanotubes, High-genus Fullernens, and Other Exotic Graphitic Materials, Procedia Engineering. Vol. 14 (2011), p.2373–2385.

DOI: 10.1016/j.proeng.2011.07.299

Google Scholar

[32] C.W. Li, T.W. Chou, A structural mechanics approach for the analysis of carbon nanotubes, ijsolstr. Vol. 40 (2003), p.2487–2499.

Google Scholar

[33] M. Zaeri, and S. Ziaei-Rad, Elastic properties of carbon nanoscrolls, RSC Adv. Vol. 4 (2014), p.22995–23001.

DOI: 10.1039/c4ra01931h

Google Scholar

[34] J.H. Lee, B.S. Lee, Modal-analysis-of-carbon-nanotubes-and-nanocones-using-FEM, Comp. Mater. Sci. Vol. 51 (2012) p.30–42.

DOI: 10.1016/j.commatsci.2011.06.041

Google Scholar

[35] K.I. Tserpes, P. Papanikos, Finite element modeling of single-walled carbon nanotubes, Comp. Part B. Vol. 36 (2005), p.468–477.

DOI: 10.1016/j.compositesb.2004.10.003

Google Scholar

[36] N.A. Sakharova, A.F.G. Pereira, J.M. Antunes, C.M.A. Brett and J.V. Fernandes, Mechanical characterization of single-walled carbon nanotubes- Numerical simulation study, Comp. Part B. Vol. 75 (2015), pp.73-85.

DOI: 10.1016/j.compositesb.2015.01.014

Google Scholar

[37] K.M. Liew, X.Q. He and C.H. Wong, On the study of elastic and plastic properties of multi-walled carbon nanotubes under axial tension using molecular dynamics simulation, Acta Materialia Vol. 52 (2004), p.2521–2527.

DOI: 10.1016/j.actamat.2004.01.043

Google Scholar