Peculiarity of Grain Boundary Diffusion of Fe and Co in Cu

Article Preview

Abstract:

In this article new experimental evidences of anomalous grain boundary diffusion (GBD) of Fe and Co in Cu were describe. To demonstrate that the brief describing of results of grain boundary diffusion in Cu with following formulation of rules which can be established on the base of the analysis of the results is presented. Experimental results which are described here concern the attempt to change the effect negative segregation by microalloying by sulfur which did not change the situation and the diffusion through foil which allowed to demonstrate the absence of accelerated GB diffusion without specific sample preparation. It is shown that GBs do not give the additional effect to the flux of Fe and Co through the foil. The extended model of surface tension gradient as an additional driving force is described.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

135-140

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Kaur, W. Gust and I. Kozma: Handbook of Grain and Interphase Boundary Diffusion Data, Ziegler Press, Stuttgart (1989).

Google Scholar

[2] L. G. Harrison: Trans. Faraday Soc., Vol. 57 (1961) p.1191.

Google Scholar

[3] Suzuoka TJ. Trans Jap Inst Metals 1961; 2: 25.

Google Scholar

[4] R. T. P. Whipple: Phil. Mag., Vol. 45 (1954), p.1225.

Google Scholar

[5] T. Surholt, Yu. Mishin, Chr. Herzig: Phys. Rev, Vol. 50 B (1994) p.3577.

Google Scholar

[6] D.L. Beke, I. Godeny, F.J. Kedves: Phil. Mag. A. Vol. 47 (1983) p.281.

Google Scholar

[7] S. V. Divinski, M. Lohmann, Chr. Herzig: Acta Mat. Vol. 49 (2001) p.249.

Google Scholar

[8] H. Edelhof, S. Prokofjev, M. Lohman and Chr. Herzig: Scr. Mat. Vol. 641 (2011) p.374.

Google Scholar

[9] S. Divinski, M. Lohmann, Chr. Herzig: Acta Mat. Vol. 52 (2004) p.3973.

Google Scholar

[10] M. Lohmann, S.V. Divinski, Chr. Herzig: Z. Metallkd. Vol. 94 (2003) p.249.

Google Scholar

[11] M. Pinneau, B. Aufray, F. Cabane-Brouty and J. Cabane: Acta Mat., Vol. 31 (1983), p.1047.

DOI: 10.1016/0001-6160(83)90200-6

Google Scholar

[12] S. V. Divinski, J. Ribbe, G. Scmitz, Chr. Herzig: Acta Mat. Vol. 55 (2007) p.3337.

Google Scholar

[13] Е. D. Hondros and M. P. Seah: Int. Met. Rev., Vol. 22, (1977) p.262.

Google Scholar

[14] Landot-Bornstein, Handbook, Vol. 26. ed. H. Mehrer, p.744.

Google Scholar

[15] Bernardini J., Cabane J., Acta Metall. Vol. 21 (1973) 1561.

Google Scholar

[16] Ribbe J., Schmitz G., Divinski S.V. Def. and Diff. Forum. Vol. 289-292 (2009) p.211.

Google Scholar

[17] D. Prokoshkina, V. A. Esin, S. V. Divinski: Acta Materialia Vol. 133 (2017) 240-246.

Google Scholar

[18] D. Prokoshkina, A.O. Rodin, V. Esin: Def. and Dif. Forum, Vol. 323-325 (2012) p.171.

Google Scholar

[19] A. Itckovich, B. Bokstein, A. Rodin: Mat. Let. Vol. 135 (2014) p.241.

Google Scholar

[20] T. Fujii, M. Moriyama, M. Kato and T. Mori: Phil. Mag. A, Vol. 68: 1 (1993), p.137.

Google Scholar

[21] Vengrenovitch , R. D.: Acta metall., Vol. 30 (1982) p.1079.

Google Scholar

[22] S.N. Zhevnenko, E.I. Gershman: J. Alloy Comp. Vol. 536 (2012) p. S554.

Google Scholar

[23] A. Pineau et al.: Acta Met. Vol. 31, 7 (1983), p.1047.

Google Scholar

[24] A. Rodin, A. Khairullin: Def. and Dif. Forum Vol. 363 (2015) p.130.

Google Scholar

[25] B. Bokstein, A. Rodin: Metallofiz. I Nov. Tekhn. Vol. 35 Is. 9 (2013) 1223.

Google Scholar