The Influence of Temperature and Alloy Composition on Austenitic Stainless Steel Oxidation Resistance

Article Preview

Abstract:

Stainless steels can form a protective oxide layer when exposed to a high temperature oxidising environment, this protective layer forms a diffusion barrier and slows the oxidation of the alloys in harsh environments. This characteristic has made stainless steels one of the most commonly used alloys for high temperature industrial applications. In this work, a systematic testing procedure has been used to investigate the high temperature oxidation of two commonly used grades of stainless steel, 316 and 310. Samples of each alloy have undergone isothermal testing in air at 1050°C, 1150°C and 1250°C for a range of time periods up to 8h. The oxidation kinetics were also investigated using thermo-gravimetric analysis in air at the same temperatures for 8h. The oxide layers formed on the samples were characterised using X-Ray diffraction, Scanning electron microscopy and energy dispersive spectroscopy. Information derived from oxide layer characterisation was used to explain any differences between the two alloys in terms of oxidation rate and overall alloy performance in the high temperature environment.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

141-150

Citation:

Online since:

November 2017

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2017 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] Birks N, Meier GH, Pettit FS. Introduction to the High Temperature Oxidation of Metals (2006).

Google Scholar

[2] Lopez HF, Mendoza-Del Angel H. Mater Chem Phys. 146 (2014) 204–211.

Google Scholar

[3] Wang SG, Sun M, Han HB, Long K, Zhang ZD. Corros Sci. 72 (2013) 64–72.

Google Scholar

[4] Marasco AL, Young DJ. Oxid Met. 36 (1991) 157–174.

Google Scholar

[5] Lussana D, Baldissin D, Massazza M, Baricco M. Oxid Met. 81 (2014) 515–528.

DOI: 10.1007/s11085-013-9465-0

Google Scholar

[6] Jonsson T, Pujilaksono B, Heidari H, Liu F, Svensson JE, Halvarsson M, Johansson LG. Corros Sci 75 (2013) 326-336.

Google Scholar

[7] Halvarsson M, Tang JE, Asteman H, Svensson JE, Johansson LG. 48 (2006) 2014–(2035).

Google Scholar

[8] Gheno T, Monceau D, Young DJ. Corros Sci. 64 (2012) 222–33.

Google Scholar

[9] Frutos E, Adeva P, González-Carrasco JL, Pérez P. Surf Coatings Technol 236 (2013) 188–99.

Google Scholar

[10] Habib KA, Damra MS, Saura JJ, Cervera I, Bellés J. Int J Corros. 2011 (2011) 1-10.

Google Scholar

[11] Jonsson T, Karlsson S, Hooshyar H, Sattari M, Liske J, Svensson JE, Johansson LG. Oxid Met. 85 (2016) 509–536.

DOI: 10.1007/s11085-016-9610-7

Google Scholar

[12] Pint B a, More KL, Tortorelli PF. Vol 1 Turbo Expo 2002. (2002)1045–51.

Google Scholar

[13] Vesel A, Mozetic M, Drenik A, Hauptman N, Balat-Pichelin M. Appl Surf Sci. 255 (2008) 1759–65.

DOI: 10.1016/j.apsusc.2008.06.017

Google Scholar

[14] Huntz AM, Reckmann A, Haut C, Sévérac C, Herbst M, Resende FCT, Sabioni ACS. Mater Sci Eng A. 447 (2007) 266–76.

DOI: 10.1016/j.msea.2006.10.022

Google Scholar

[15] Col A, Parry V, Pascal C. Corros Sci. 114 (2017) 17–27.

Google Scholar

[16] Nguyen TD, Zhang J, Young DJ. Corros Sci. 89 (2014) 220–35.

Google Scholar

[17] Karimi N, Riffard F, Rabaste F, Perrier S, Cueff R, Issartel C, Buscail H. Appl Surf Sci. 254 (2008) 2292–9.

DOI: 10.1016/j.apsusc.2007.09.018

Google Scholar

[18] Cheng S, Kuan S, Tsai W. Corros Sci. 48 (2006) 634–49.

Google Scholar

[19] Otsuka N, Nishiyama Y, Kudo T. Oxid Met. 62 (2004) 121-139.

Google Scholar

[20] Asteman H, Svensson J, Johansson L. Oxid Met. 57 (2002) 193-216.

Google Scholar

[21] Soleimani Dorcheh A, Durham RN, Galetz MC. Sol Energy Mater Sol Cells. 144 (2016) 109–116.

Google Scholar

[22] Hansson AN, Pantleon K, Grumsen FB, Somers MAJ. Oxid Met. 73 (2010) 289–309.

Google Scholar

[23] Tang JE, Halvarsson M, Asteman H, Svensson JE. Micron. 32 (2001) 799–805.

DOI: 10.1016/s0968-4328(00)00087-1

Google Scholar