In Situ XRD Experiments on the Growth of Expanded Austenite Using Different Process Gases

Article Preview

Abstract:

In this work we show our result of in-situ nitrocarburizing and nitriding treatments AISI316L specimens. Part of the samples have been depassivated ex-situ and coated with a Ni layer, while other specimens received in-situ depassivation. Processing was carried out in a custom built reaction chamber attached to a Bruker D8 Advance diffractometer. We monitored the 111 peak of both the base material and expanded austenite. From the shrinkage of the base material peak the total thickness of the expanded austenite can be determined. Applying both N and C resulted in a more than 10 times faster growth of the expanded austenite than with N only. The growth is thermally activated. The activation energy for nitrocarburizing is 164 kJ/mol. This is in agreement with the activation energy of the diffusion of interstitials. Detailed analysis of the expanded austenite peak allowed the derivation of a “master curve” for the composition depth profile. This suggest that two interacting process controls the evolution. The width of the reaction zone is limited by the diffusion at low concentration side. The total concentration is determined by the reaction at the interface.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

142-146

Citation:

Online since:

February 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] J. Buhagiar, H. Dong, T. Bell, Low temperature plasma surface alloying of medical grade austenitic steel with carbon and nitrogen, Surf. Eng. 23 (2007) 313-317.

DOI: 10.1179/174329407x215195

Google Scholar

[2] J.R. Davis, ASM Speciality Handbook: Stainless steels, ASM International, (1994).

Google Scholar

[3] K. Ichii, K. Fujimura, T. Takase, Structure of the nitride layer of 18-8 stainless steel, Technol. Rep. Kansai Uiv. 27 (1986) 135-144.

Google Scholar

[4] T. Christiansen, M.A.J. Somers, On the crystallographic structure of S-phase, Scripta Mater. 50 (2004) 35-37.

Google Scholar

[5] M.A.J. Somers, T. Christiansen, P. Møller, Danish Patent DK174707B1 and PCT/DK03/00497.

Google Scholar

[6] T. Christiansen, M.A.J. Somers, Controlled Dissolution of Colossal Quantities of Nitrogen in Stainless Steel, Metall. Mater. Trans. A 37 (2006) 675-682.

DOI: 10.1007/s11661-006-0039-5

Google Scholar

[7] Z. Balogh-Michels, A. Faeht, S. Kleiner, A. von Känel, J. -M. Rufer, A. Dommann, P. Margraf, G. Tschopp, A. Neels, In-situ kinetics study on the growth of expanded austenite in AISI 316L stainless steels by XRD, J. Appl. Phys., 122, 025111 (2017).

DOI: 10.1063/1.4993189

Google Scholar

[8] O. Öztürk, D.L. Williamson, Phase and composition depth distribution analyses of low energy high flux N implanted stainless steel, J. Appl. Phys. 77 (1995) 3839.

DOI: 10.1063/1.358561

Google Scholar

[9] T. Christiansen, M.A.J. Somers, Determination of the concentration dependent diffusion coefficient of nitrogen in expanded austenite, Int. J. Mater. Res., 99 (2008) 999-1005.

DOI: 10.3139/146.101729

Google Scholar

[10] D. Manova, S. Mändl, J.W. Gerlach, D. Hirsch, H. Neumann, B. Rauschenbach, In situ x-ray diffraction investigations during low energy ion nitriding of austenitic stainless steel grade 1. 4571, J. Phys. D: Appl. Phys., 47 (2014) 365301.

DOI: 10.1088/0022-3727/47/36/365301

Google Scholar

[11] U. Gösele, K.N. Tu, Growth kinetics of planar binary diffusion couples: Thin-film case" versus "bulk cases, J. Appl. Phys. 53 (1982) 3252-3260.

DOI: 10.1063/1.331028

Google Scholar

[12] Z. Erdélyi, D.L. Beke, P. Nemes, G.A. Langer, On the validity of the continuum approach for nonlinear diffusional mixing of multilayers, Philos. Mag. 79 (1999) 1757-1768.

DOI: 10.1080/01418619908210390

Google Scholar

[13] Z. Balogh and G. Schmitt, Diffusion in Metals and Alloys, in D.E. Laughlin and K. Hono (Eds), Physical Metallurgy Ed. 5, Elsevier, Amsterdam, 2014, Ch. 5. 7. 1 pp.525-535.

Google Scholar

[14] B.E. Deal, A.S. Grove, General relationship for the thermal oxidation of silicon, J. Appl. Phys. 36 (1965) 3770-3778.

Google Scholar

[15] P. Thibaux, A. Métenier, C. Xhoffer. Metall., Carbon Diffusion Measurement in Austenite in the Temperature Range 500 °C to 900 °C, Mater. Trans. A 38 (2007) 1169-1176.

DOI: 10.1007/s11661-007-9150-5

Google Scholar

[16] R.P. Smith, Diffusivity of carbon in gamma iron-cobalt alloys, Trans AIME, 230 (1964) 476.

Google Scholar

[17] D. Wu, Y. Ge, H. Kahn, F. Ernst, A.H. Heuer, Diffusion profiles after nitrocarburising austenitic stainless steel, Surf. Coat. Technol. 279 (2015) 180-185.

DOI: 10.1016/j.surfcoat.2015.08.048

Google Scholar