[1]
J. Buhagiar, H. Dong, T. Bell, Low temperature plasma surface alloying of medical grade austenitic steel with carbon and nitrogen, Surf. Eng. 23 (2007) 313-317.
DOI: 10.1179/174329407x215195
Google Scholar
[2]
J.R. Davis, ASM Speciality Handbook: Stainless steels, ASM International, (1994).
Google Scholar
[3]
K. Ichii, K. Fujimura, T. Takase, Structure of the nitride layer of 18-8 stainless steel, Technol. Rep. Kansai Uiv. 27 (1986) 135-144.
Google Scholar
[4]
T. Christiansen, M.A.J. Somers, On the crystallographic structure of S-phase, Scripta Mater. 50 (2004) 35-37.
Google Scholar
[5]
M.A.J. Somers, T. Christiansen, P. Møller, Danish Patent DK174707B1 and PCT/DK03/00497.
Google Scholar
[6]
T. Christiansen, M.A.J. Somers, Controlled Dissolution of Colossal Quantities of Nitrogen in Stainless Steel, Metall. Mater. Trans. A 37 (2006) 675-682.
DOI: 10.1007/s11661-006-0039-5
Google Scholar
[7]
Z. Balogh-Michels, A. Faeht, S. Kleiner, A. von Känel, J. -M. Rufer, A. Dommann, P. Margraf, G. Tschopp, A. Neels, In-situ kinetics study on the growth of expanded austenite in AISI 316L stainless steels by XRD, J. Appl. Phys., 122, 025111 (2017).
DOI: 10.1063/1.4993189
Google Scholar
[8]
O. Öztürk, D.L. Williamson, Phase and composition depth distribution analyses of low energy high flux N implanted stainless steel, J. Appl. Phys. 77 (1995) 3839.
DOI: 10.1063/1.358561
Google Scholar
[9]
T. Christiansen, M.A.J. Somers, Determination of the concentration dependent diffusion coefficient of nitrogen in expanded austenite, Int. J. Mater. Res., 99 (2008) 999-1005.
DOI: 10.3139/146.101729
Google Scholar
[10]
D. Manova, S. Mändl, J.W. Gerlach, D. Hirsch, H. Neumann, B. Rauschenbach, In situ x-ray diffraction investigations during low energy ion nitriding of austenitic stainless steel grade 1. 4571, J. Phys. D: Appl. Phys., 47 (2014) 365301.
DOI: 10.1088/0022-3727/47/36/365301
Google Scholar
[11]
U. Gösele, K.N. Tu, Growth kinetics of planar binary diffusion couples: Thin-film case" versus "bulk cases, J. Appl. Phys. 53 (1982) 3252-3260.
DOI: 10.1063/1.331028
Google Scholar
[12]
Z. Erdélyi, D.L. Beke, P. Nemes, G.A. Langer, On the validity of the continuum approach for nonlinear diffusional mixing of multilayers, Philos. Mag. 79 (1999) 1757-1768.
DOI: 10.1080/01418619908210390
Google Scholar
[13]
Z. Balogh and G. Schmitt, Diffusion in Metals and Alloys, in D.E. Laughlin and K. Hono (Eds), Physical Metallurgy Ed. 5, Elsevier, Amsterdam, 2014, Ch. 5. 7. 1 pp.525-535.
Google Scholar
[14]
B.E. Deal, A.S. Grove, General relationship for the thermal oxidation of silicon, J. Appl. Phys. 36 (1965) 3770-3778.
Google Scholar
[15]
P. Thibaux, A. Métenier, C. Xhoffer. Metall., Carbon Diffusion Measurement in Austenite in the Temperature Range 500 °C to 900 °C, Mater. Trans. A 38 (2007) 1169-1176.
DOI: 10.1007/s11661-007-9150-5
Google Scholar
[16]
R.P. Smith, Diffusivity of carbon in gamma iron-cobalt alloys, Trans AIME, 230 (1964) 476.
Google Scholar
[17]
D. Wu, Y. Ge, H. Kahn, F. Ernst, A.H. Heuer, Diffusion profiles after nitrocarburising austenitic stainless steel, Surf. Coat. Technol. 279 (2015) 180-185.
DOI: 10.1016/j.surfcoat.2015.08.048
Google Scholar