[1]
S. P. Belov, M. J. Brun, S. G. Glazunov, B. A. Kolachev (Eds. ), Metallography of titanium and its alloys, Metallurgy, Moscow, (1992).
Google Scholar
[2]
A. G. Illarionov, A. A. Popov. Technological and operational properties of titanium alloys (in Russian), Ekaterinburg, (2014).
Google Scholar
[3]
Improving the operating properties of parts of titanium alloys by surface hardening in high density plasma of glow discharge / Ramazanov K.N., Zolotov I.V., Khusainov Yu.G., Khusnutdinov R.F. / Journal of Physics: Conference Series 652(2015).
DOI: 10.1088/1742-6596/652/1/012055
Google Scholar
[4]
wwZ95BqN.
Google Scholar
[5]
Yu. M. Lakhtin, Ya. D. Kogan, G.I. Shpis, et. al., Theory and technology of nitriding, Metallurgy, Moscow, (1991).
Google Scholar
[6]
V. V. Budilov, R. D. Agzamov, K. N. Ramazanov, Technology of ion nitriding in glow discharge with a hollow cathode. Metal Science and Heat Treatment 7. 25 (2007) 25–29.
DOI: 10.1007/s11041-007-0065-y
Google Scholar
[7]
B. N. Arzamasov, A. G. Bratukhin, Y. S. Eliseev, T. A. Panayoti, Ion chemical thermal processing of alloys in gas environments, Publishing house of Bauman MSTU, Moscow, (1999).
Google Scholar
[8]
Lopatin I.V., Akhmadeev Yu.H. Scientific News of Belgorod State University. Series: Mathematics. Physics 22 (2011) 180–186.
Google Scholar
[9]
I. A. Panayoti, G.V. Soloviev, Ion nitriding of aging (α + β) -titanium alloys. Metal Science and Heat Treatment, 5 (1996) 28-31.
Google Scholar
[10]
Ani Zhechevaa, Wei Sha, Savko Malinov, Adrian Longa Enhancing the microstructure and properties of titanium alloys through nitriding and other surface engineering methods / Surface and Coatings Technology. 2015, vol. 200, no. 7, pp.2192-2207.
DOI: 10.1016/j.surfcoat.2004.07.115
Google Scholar
[11]
Rie K. -T., Lampe Th. Thermochemical surface treatment of titanium and titanium alloy Ti-6A1-4V by low energy nitrogen ion bombardment / Mater. Sci. Eng. 1985. -№69. - P. 473-481.
DOI: 10.1016/0025-5416(85)90349-0
Google Scholar
[12]
Ahmadeev YU.H., Goncharenko I.M., Ivanov YU.F., Koval' N.N., SHCHanin P. M, Nitriding technically pure titanium in a glow discharge with hollow cathode / Pis'ma v Zhurnal tekhnicheskoj fiziki. 2005, vol. 31, no. 13, pp.24-30.
Google Scholar
[13]
Smolyakova M. YU., Vershinin D.S. A study of the influence of gas mixture composition for low temperature nitriding on the structure and properties of titanium / Perspektivnye materialy, 2011, no. 1, pp.478-482.
Google Scholar
[14]
T.A. Panajoti, A maximum saturating ability of the gaseous medium during ion nitriding of alloys / Fizika i himiya obrabotki materialov, 2003, no. 4, pp.70-78.
Google Scholar
[15]
Metin Е., Osmal Т. Kinetics of the Layer Growth and Multiphase Diffusion in Ion Nitrided Titanium. Met. Trans. 1989. V. 20A. P. 1819-1832.
DOI: 10.1007/bf02663213
Google Scholar
[16]
Wasilewski R.J., Kehl I. Diffusion of nitrogen and oxygen in titanium. J. of the Inst. Of Metals., 1954/55, 83, p.94 – 104.
Google Scholar
[17]
Smyslov A. M., Smyslova M. K., Dubin A. I., Sazonov V. P. and Pavlov V. F. Investigation of residual stress influence considering fractographic characteristics. News of higher educational institutions. 2016. p.121–130.
Google Scholar