[1]
S.G. Hong, S.H. Park, C.S. Lee, Role of {1 0 -1 2} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy, Acta Mater. 58 (2010) 5873–5885.
DOI: 10.1016/j.actamat.2010.07.002
Google Scholar
[2]
A. Ostapovets, P. Molnár, A. Jäger, Visco-plastic self-consistent modelling of a grain boundary misorientation distribution after equal-channel angular pressing in an AZ31 magnesium alloy, J. Mater. Sci. 48 (2013) 2123-2134.
DOI: 10.1007/s10853-012-6987-9
Google Scholar
[3]
A. Ostapovets, J. Buršík, K. Krahula, L. Král, A. Serra, On the relationship between and conjugate twins and double extension twins in rolled pure Mg, Phil. Mag. 97 (2017) 1088-1101.
DOI: 10.1080/14786435.2017.1290846
Google Scholar
[4]
C.D. Barrett, H. El Kadiri, The roles of grain boundary dislocations and disclinations in the nucleation of {1 0 -1 2} twinning, Acta Mater. 63 (2014) 1-15.
DOI: 10.1016/j.actamat.2013.09.012
Google Scholar
[5]
C.D. Barrett, H. El Kadiri, Impact of deformation faceting on {10-11}, {10-12} and {10-13} embryonic twin nucleation in hexagonal close-packed metals, Acta Mater. 70 (2014),137–161.
Google Scholar
[6]
A. Ostapovets, A. Serra, Slip dislocation and twin nucleation mechanisms in hcp metals, J. Mater. Sci. 52 (2017) 533-540.
DOI: 10.1007/s10853-016-0351-4
Google Scholar
[7]
J Wang, L Liu, CN Tomé, SX Mao, SK Gong, Twinning and de-twinning via glide and climb of twinning dislocations along serrated coherent twin boundaries in hexagonal-close-packed metals, Mater. Res. Lett. 1 (2013) 81-88.
DOI: 10.1080/21663831.2013.779601
Google Scholar
[8]
Q. Zu, X.Z. Tang, S. Xu, Y.F. Guo, Atomistic study of nucleation and migration of the basal/prismatic interfaces in Mg single crystals, Acta Mater. 135 (2017) 411-421.
DOI: 10.1016/j.actamat.2017.03.035
Google Scholar
[9]
M.S. Daw and M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B 29 (1984) 6443-6453.
DOI: 10.1103/physrevb.29.6443
Google Scholar
[10]
A. Ostapovets, O. Vatazhuk, Peierls barriers of a-type edge and screw dislocations moving on basal and prismatic planes in magnesium, Low Temp.Physics 43 (2017) 421-427.
DOI: 10.1063/1.4979363
Google Scholar
[11]
J.A. Yasi, T. Nogaret, D.R. Trinkle, Y. Qi Jr., L.G. Hector, W.A. Curtin, Basal and prism dislocation cores in magnesium: comparison of first-principles and embedded-atom-potential methods predictions, Modell. Simul. Mater. Sci. Eng. 17 (2009).
DOI: 10.1088/0965-0393/17/5/055012
Google Scholar
[12]
I. Shin, E.A. Carter, Simulations of dislocation mobility in magnesium from first principles, Int. J. Plasticity 60 (2014) 58–70.
DOI: 10.1016/j.ijplas.2014.04.002
Google Scholar
[13]
D.Y. Sun, M.I. Mendelev, C.A. Becker, K. Kudin, T. Haxhimali, M. Asta, Crystal melt interfacial free energies in hcp metals: a molecular dynamics study of Mg, Phys. Rev. B 73 (2006) 024116.
DOI: 10.1103/physrevb.73.024116
Google Scholar
[14]
X.Y. Liu, J. B. Adams, F. Ercolessi, and J. A. Moriarty, EAM potential for magnesium from quantum mechanical forces Modell. Simul.Mater. Sci. Eng. 4 (1996) 293-303.
DOI: 10.1088/0965-0393/4/3/004
Google Scholar
[15]
Q. Sun, A. Ostapovets, X. Zhang, L. Tan, Q. Liu, Investigation of twin–twin interaction in deformed magnesium alloy Phil. Mag. 98 (2018) 741-751.
DOI: 10.1080/14786435.2017.1417648
Google Scholar
[16]
Y. Wang, L.-Q. Chen, Z.-K. Liu, S.N. Mathaudhu, Scripta Mater. 62 (2010) 646-649.
Google Scholar
[17]
J. R. Morris, Y. Ye, M.H. Yoo First-principles examination of the twin boundary in hcp metals, Phil. Mag., 85 (2005) 233-238.
DOI: 10.1080/14786430412331315671
Google Scholar
[18]
Z. Pei X. Zhang, T. Hickel, M. Friak, S. Sandlobes, B. Dutta, J. Neugebauer Atomic structures of twin boundaries in hexagonal close-packed metallic crystals with particular focus on mg. npj Comp. Mater. 3 (2017) 6.
DOI: 10.1038/s41524-017-0010-6
Google Scholar
[19]
S. Plimpton, Fast parallel algorithms for short- range molecular dynamics, J. Comp. Phys. 117 (1995) 1–19.
Google Scholar
[20]
A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Modell. Simul. Mater. Sci. Eng. 18 (2009) 015012.
DOI: 10.1088/0965-0393/18/1/015012
Google Scholar
[21]
X.W. Zhou, R.A. Johnson, and H.N.G. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Phys. Rev. B 69(2004).144113.
DOI: 10.1103/physrevb.69.144113
Google Scholar