Variability of Twin Boundary Structure in Computer Simulations of Tensile Twins in Magnesium

Article Preview

Abstract:

Variety of interatomic potentials for magnesium can be found in the literature. Result of computer simulations can be slightly different depending on used potential. Particularly, twin boundary structure with the lowest energy can be different in a frame of different models. Comparison of several popular embedded-atom method potentials is provided. It is shown that either reflection or glide structure of twin boundary has the lowest energy for different potentials.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

241-244

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] S.G. Hong, S.H. Park, C.S. Lee, Role of {1 0 -1 2} twinning characteristics in the deformation behavior of a polycrystalline magnesium alloy, Acta Mater. 58 (2010) 5873–5885.

DOI: 10.1016/j.actamat.2010.07.002

Google Scholar

[2] A. Ostapovets, P. Molnár, A. Jäger, Visco-plastic self-consistent modelling of a grain boundary misorientation distribution after equal-channel angular pressing in an AZ31 magnesium alloy, J. Mater. Sci. 48 (2013) 2123-2134.

DOI: 10.1007/s10853-012-6987-9

Google Scholar

[3] A. Ostapovets, J. Buršík, K. Krahula, L. Král, A. Serra, On the relationship between and conjugate twins and double extension twins in rolled pure Mg, Phil. Mag. 97 (2017) 1088-1101.

DOI: 10.1080/14786435.2017.1290846

Google Scholar

[4] C.D. Barrett, H. El Kadiri, The roles of grain boundary dislocations and disclinations in the nucleation of {1 0 -1 2} twinning, Acta Mater. 63 (2014) 1-15.

DOI: 10.1016/j.actamat.2013.09.012

Google Scholar

[5] C.D. Barrett, H. El Kadiri, Impact of deformation faceting on {10-11}, {10-12} and {10-13} embryonic twin nucleation in hexagonal close-packed metals, Acta Mater. 70 (2014),137–161.

Google Scholar

[6] A. Ostapovets, A. Serra, Slip dislocation and twin nucleation mechanisms in hcp metals, J. Mater. Sci. 52 (2017) 533-540.

DOI: 10.1007/s10853-016-0351-4

Google Scholar

[7] J Wang, L Liu, CN Tomé, SX Mao, SK Gong, Twinning and de-twinning via glide and climb of twinning dislocations along serrated coherent twin boundaries in hexagonal-close-packed metals, Mater. Res. Lett. 1 (2013) 81-88.

DOI: 10.1080/21663831.2013.779601

Google Scholar

[8] Q. Zu, X.Z. Tang, S. Xu, Y.F. Guo, Atomistic study of nucleation and migration of the basal/prismatic interfaces in Mg single crystals, Acta Mater. 135 (2017) 411-421.

DOI: 10.1016/j.actamat.2017.03.035

Google Scholar

[9] M.S. Daw and M.I. Baskes, Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals, Phys. Rev. B 29 (1984) 6443-6453.

DOI: 10.1103/physrevb.29.6443

Google Scholar

[10] A. Ostapovets, O. Vatazhuk, Peierls barriers of a-type edge and screw dislocations moving on basal and prismatic planes in magnesium, Low Temp.Physics 43 (2017) 421-427.

DOI: 10.1063/1.4979363

Google Scholar

[11] J.A. Yasi, T. Nogaret, D.R. Trinkle, Y. Qi Jr., L.G. Hector, W.A. Curtin, Basal and prism dislocation cores in magnesium: comparison of first-principles and embedded-atom-potential methods predictions, Modell. Simul. Mater. Sci. Eng. 17 (2009).

DOI: 10.1088/0965-0393/17/5/055012

Google Scholar

[12] I. Shin, E.A. Carter, Simulations of dislocation mobility in magnesium from first principles, Int. J. Plasticity 60 (2014) 58–70.

DOI: 10.1016/j.ijplas.2014.04.002

Google Scholar

[13] D.Y. Sun, M.I. Mendelev, C.A. Becker, K. Kudin, T. Haxhimali, M. Asta, Crystal melt interfacial free energies in hcp metals: a molecular dynamics study of Mg, Phys. Rev. B 73 (2006) 024116.

DOI: 10.1103/physrevb.73.024116

Google Scholar

[14] X.Y. Liu, J. B. Adams, F. Ercolessi, and J. A. Moriarty, EAM potential for magnesium from quantum mechanical forces Modell. Simul.Mater. Sci. Eng. 4 (1996) 293-303.

DOI: 10.1088/0965-0393/4/3/004

Google Scholar

[15] Q. Sun, A. Ostapovets, X. Zhang, L. Tan, Q. Liu, Investigation of twin–twin interaction in deformed magnesium alloy Phil. Mag. 98 (2018) 741-751.

DOI: 10.1080/14786435.2017.1417648

Google Scholar

[16] Y. Wang, L.-Q. Chen, Z.-K. Liu, S.N. Mathaudhu, Scripta Mater. 62 (2010) 646-649.

Google Scholar

[17] J. R. Morris, Y. Ye, M.H. Yoo First-principles examination of the twin boundary in hcp metals, Phil. Mag., 85 (2005) 233-238.

DOI: 10.1080/14786430412331315671

Google Scholar

[18] Z. Pei X. Zhang, T. Hickel, M. Friak, S. Sandlobes, B. Dutta, J. Neugebauer Atomic structures of twin boundaries in hexagonal close-packed metallic crystals with particular focus on mg. npj Comp. Mater. 3 (2017) 6.

DOI: 10.1038/s41524-017-0010-6

Google Scholar

[19] S. Plimpton, Fast parallel algorithms for short- range molecular dynamics, J. Comp. Phys. 117 (1995) 1–19.

Google Scholar

[20] A. Stukowski, Visualization and analysis of atomistic simulation data with OVITO–the Open Visualization Tool, Modell. Simul. Mater. Sci. Eng. 18 (2009) 015012.

DOI: 10.1088/0965-0393/18/1/015012

Google Scholar

[21] X.W. Zhou, R.A. Johnson, and H.N.G. Wadley, Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers, Phys. Rev. B 69(2004).144113.

DOI: 10.1103/physrevb.69.144113

Google Scholar