Numerical and Experimental Investigation on the Hybrid Superplastic Forming of the Conical Mg Alloy Component

Article Preview

Abstract:

Hybrid superplastic forming (SPF) is a novel sheet metal forming technique that combines hot drawing with gas forming process. Compared with the conventional SPF process, the thickness distribution of AZ31B part formed by this hybrid SPF method has been significantly improved. Additionally, the microstructure evolution of AZ31 was examined by electron backscatter diffraction (EBSD). Many subgrains with low misorientation angle were observed in the coarse grains during SPF. Based on the tensile test results, parameters of hyperbolic sine creep law model was determined at 400 oC. The hybrid SPF behavior of non-superplastic grade AZ31B was predicted by ABAQUS using this material forming model. The FEM results of thickness distribution, thinning characteristics and forming height were compared with the experimental results and have shown reasonable agreement with each other.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

391-396

Citation:

Online since:

July 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] E. Aghion, B. Bronfin, D. Eliezer, J Mater Process Tech, 117 (2001) 381-385.

Google Scholar

[2] N.T. Nguyen, O.S. Seo, C.A. Lee, M.G. Lee, J.H. Kim, H.Y. Kim, Materials, 7 (2014) 1271-1295.

Google Scholar

[3] B.L. Mordike, T. Ebert, Mat Sci Eng a-Struct, 302 (2001) 37-45.

Google Scholar

[4] A.W. El-Morsy, K. Manabe, H. Nishimura, Mater Trans, 43 (2002) 2443-2448.

Google Scholar

[5] K.F. Zhang, D.L. Yin, G.F. Wang, W.B. Han, J Wuhan Univ Technol, 21 (2006) 1-6.

Google Scholar

[6] A. Mwembela, E.B. Konopleva, H.J. McQueen, Scripta Mater, 37 (1997) 1789-1795.

DOI: 10.1016/s1359-6462(97)00344-8

Google Scholar

[7] R. Singh, P.D. Lee, R.J. Dashwood, T.C. Lindley, Mater Technol, 25 (2010) 127-136.

Google Scholar

[8] L. Saitova, I. Semenova, H.W. Hoppel, R. Valiev, M. Goken, Materialwiss Werkst, 39 (2008) 367-370.

Google Scholar

[9] S.V. Zherebtsov, G.A. Salishchev, R.M. Galeyev, O.R. Valiakhmetov, S.Y. Mironov, S.L. Semiatin, Scripta Mater, 51 (2004) 1147-1151.

DOI: 10.1016/j.scriptamat.2004.08.018

Google Scholar

[10] R. Curran, A.K. Kundu, J.M. Wright, S. Crosby, M. Price, S. Raghunathan, E. Benard, Int J Adv Manuf Tech, 31 (2006) 407-420.

DOI: 10.1007/s00170-005-0205-8

Google Scholar

[11] G.Q. Fan, F.T. Sun, X.G. Meng, L. Gao, G.Q. Tong, Int J Adv Manuf Tech, 49 (2010) 941-947.

Google Scholar

[12] J. Sun, Y.B. Guo, Int J Adv Manuf Tech, 41 (2009) 651-659.

Google Scholar

[13] A.J. Barnes, J Mater Eng Perform, 22 (2013) 2935-2949.

Google Scholar

[14] P.A. Friedman, S.G. Luckey, W.B. Copple, R. Allor, C.E. Miller, C. Young, J Mater Eng Perform, 13 (2004) 670-677.

Google Scholar

[15] Y. Luo, S.G. Luckey, P.A. Friedman, Y. Peng, Int J Mach Tool Manu, 48 (2008) 1509-1518.

Google Scholar

[16] J. Liu, M.J. Tan, A.E.W. Jarfors, S.C.V. Lim, K.S. Fong, S. Castagne, International Symposium on Materials Science and Innovation for Sustainable Society: Eco-Materials and Eco-Innovation for Global Sustainability (Eco-Mates 2011), 379 (2012).

DOI: 10.1088/1742-6596/379/1/011001

Google Scholar

[17] J. Liu, M.J. Tan, Y. Aue-U-Lan, A.E.W. Jarfors, K.S. Fong, S. Castagne, Int J Adv Manuf Tech, 52 (2011) 123-129.

DOI: 10.1007/s00170-010-2729-9

Google Scholar

[18] E.N. Chumachenko, V.K. Portnoi, L. Paris, T. Billaudeau, J Mater Process Tech, 170 (2005) 448-456.

Google Scholar

[19] P.A. Beck, Adv Phys, 3 (1954) 245-324.

Google Scholar

[20] C.M. Sellars, W.J.M. Tegart, Mem Etud Sci Rev Met, 63 (1966) 731-746.

Google Scholar