Non-Invasive Temperature-Feedback SERS with all-Dielectric Resonant Nanostructures

Article Preview

Abstract:

All-dielectric resonant micro-and nanostructures emerge as a promising platform, which can complement the metal-based counterparts in routine biosensing measurements based on surface-enhanced Raman scattering (SERS). However, lack of in-situ temperature control limits performance of nanostructures for precise SERS-based applications. Here, we present an approach for SERS measurement with simultaneous temperature control and employ Raman spectroscopy to mapping of temperature-dependent Raman signal distribution. We attest a chemically inert black silicon (b-Si) substrate for a non-invasive (chemically non-perturbing) SERS identification of the molecular fingerprints at low concentrations. Additional studies of the slow daylight-driven para-aminothiophenol (PATP)-to-4,4'-dimercaptoazobenzene (DMAB) catalytic conversion in the aqueous methanol solution loaded with colloidal silver nanoparticles confirm the non-invasive SERS performance of the all-dielectric crystalline b-Si substrate. Proposed SERS substrates can be fabricated using easy-to-implement scalable technology of plasma etching making such inexpensive all-dielectric substrates promising for routine SERS applications, where the temperature-feedback and the noninvasiveness are of mandatory importance.

You might also be interested in these eBooks

Info:

Periodical:

Pages:

196-200

Citation:

Online since:

September 2018

Export:

Price:

Permissions CCC:

Permissions PLS:

Сopyright:

© 2018 Trans Tech Publications Ltd. All Rights Reserved

Share:

Citation:

* - Corresponding Author

[1] I. Alessandri and J. Lombardi, Chem. Rev. 116 (2016) 14921.

Google Scholar

[2] N. Bontempi, E. Biavardi, D. Bordiga, G. Candiani, I. Alessandri, P. Bergese, and E. Dalcanale, Nanoscale 25 (2017) 1703274.

DOI: 10.1039/c7nr02491f

Google Scholar

[3] M. Aouassa, E. Mitsai, S. Syubaev, D. Pavlov, A. Zhizhchenko, I. Jadli, L. Hassayoun, G. Zograf, S. Makarov, and A. Kuchmizhak, Appl. Phys. Lett. 111 (2017) 243103.

DOI: 10.1063/1.5007277

Google Scholar

[4] Y. Nishijima, R. Komatsu, S. Ota, G. Seniutinas, A. Balčytis, and S. Juodkazis, Appl. Phys. Lett.: Photonics 1 (2016) 076104.

DOI: 10.1063/1.4964851

Google Scholar

[5] M. Osawa, N. Matsuda, K. Yoshii, and I. Uchida, J. Phys. Chem. 98 (1994) 12702.

Google Scholar

[6] L. Cao, P. Diao, L. Tong, T. Zhu, and Z. Liu, ChemPhysChem 6 (2005) 913.

Google Scholar